Two serial filters control P2X7 cation selectivity, Ser342 in the central pore and lateral acidic residues at the cytoplasmic interface

Author:

Markwardt Fritz1ORCID,Schön Eike Christian1ORCID,Raycheva Michaela2,Malisetty Aparna2,Hawro Yakoob Sanaria2,Berthold Malte1,Schmalzing Günther2ORCID

Affiliation:

1. Julius-Bernstein-Institute of Physiology, Martin-Luther-University , Magdeburger Straße 6, D-06097 Halle/Saale , Germany

2. Institute of Clinical Pharmacology, RWTH Aachen University , Wendlingweg 2, D-52074 Aachen , Germany

Abstract

Abstract The human P2X7 receptor (hP2X7R) is a homotrimeric cell surface receptor gated by extracellular ATP4− with two transmembrane helices per subunit, TM1 and TM2. A ring of three S342 residues, one from each pore-forming TM2 helix, located halfway across the membrane bilayer, functions to close and open the gate in the apo and ATP4−-bound open states, respectively. The hP2X7R is selective for small inorganic cations, but can also conduct larger organic cations such as Tris+. Here, we show by voltage-clamp electrophysiology in Xenopus laevis oocytes that mutation of S342 residues to positively charged lysines decreases the selectivity for Na+ over Tris+, but maintains cation selectivity. Deep in the membrane, laterally below the S342 ring are nine acidic residues arranged as an isosceles triangle consisting of residues E14, D352, and D356 on each side, which do not move significantly during gating. When the E14K mutation is combined with lysine substitutions of D352 and/or D356, cation selectivity is lost and permeation of the small anion Cl− is allowed. Lysine substitutions of S342 together with D352 or E14 plus D356 in the acidic triangle convert the hP2X7R mutant to a fully Cl−-selective ATP4−-gated receptor. We conclude that the ion selectivity of wild-type hP2X7R is determined by two sequential filters in one single pathway: (i) a primary size filter, S342, in the membrane center and (ii) three cation filters lateral to the channel axis, one per subunit interface, consisting of a total of nine acidic residues at the cytoplasmic interface.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3