Language models, like humans, show content effects on reasoning tasks

Author:

Lampinen Andrew K1ORCID,Dasgupta Ishita1,Chan Stephanie C Y1ORCID,Sheahan Hannah R2,Creswell Antonia2,Kumaran Dharshan2ORCID,McClelland James L13ORCID,Hill Felix2

Affiliation:

1. Google DeepMind , Mountain View, CA, 94043   USA

2. Google DeepMind , London N1C 4DN , UK

3. Stanford University , Stanford, CA 94306 , USA

Abstract

Abstract Abstract reasoning is a key ability for an intelligent system. Large language models (LMs) achieve above-chance performance on abstract reasoning tasks but exhibit many imperfections. However, human abstract reasoning is also imperfect. Human reasoning is affected by our real-world knowledge and beliefs, and shows notable “content effects”; humans reason more reliably when the semantic content of a problem supports the correct logical inferences. These content-entangled reasoning patterns are central to debates about the fundamental nature of human intelligence. Here, we investigate whether language models—whose prior expectations capture some aspects of human knowledge—similarly mix content into their answers to logic problems. We explored this question across three logical reasoning tasks: natural language inference, judging the logical validity of syllogisms, and the Wason selection task. We evaluate state of the art LMs, as well as humans, and find that the LMs reflect many of the same qualitative human patterns on these tasks—like humans, models answer more accurately when the semantic content of a task supports the logical inferences. These parallels are reflected in accuracy patterns, and in some lower-level features like the relationship between LM confidence over possible answers and human response times. However, in some cases the humans and models behave differently—particularly on the Wason task, where humans perform much worse than large models, and exhibit a distinct error pattern. Our findings have implications for understanding possible contributors to these human cognitive effects, as well as the factors that influence language model performance.

Publisher

Oxford University Press (OUP)

Reference85 articles.

1. Connectionism and cognitive architecture: a critical analysis;Fodor;Cognition,1988

2. Physical symbol systems;Newell;Cogn Sci,1980

3. Abstraction and analogy-making in artificial intelligence;Mitchell;Ann N Y Acad Sci,2021

4. Deep learning needs a prefrontal cortex;Russin;Work Bridging AI Cogn Sci,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3