Cooperative ligand binding to a double-stranded Ising lattice—Application to cofilin binding to actin filaments

Author:

Cao Wenxiang1ORCID,Taylor Edwin W1,De La Cruz Enrique M1ORCID

Affiliation:

1. Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, CT 06520 , USA

Abstract

Abstract Cooperative ligand binding to linear polymers is fundamental in many scientific disciplines, particularly biological and chemical physics and engineering. Such ligand binding interactions have been widely modeled using infinite one-dimensional (1D) Ising models even in cases where the linear polymers are more complex (e.g. actin filaments and other double-stranded linear polymers). Here, we use sequence-generating and transfer matrix methods to obtain an analytical method for cooperative equilibrium ligand binding to double-stranded Ising lattices. We use this exact solution to evaluate binding properties and features and analyze experimental binding data of cooperative binding of the regulatory protein, cofilin, to actin filaments. This analysis, with additional experimental information about the observed bound cofilin cluster sizes and filament structure, reveals that a bound cofilin promotes cooperative binding to its longitudinal nearest-neighbors but has very modest effects on lateral nearest-neighbors. The bound cofilin cluster sizes calculated from the best fit parameters from the double-stranded model are considerably larger than when calculated with the 1D model, consistent with experimental observations made by electron microscopy and fluorescence imaging. The exact solution obtained and the method for using the solution developed here can be widely used for analysis of variety of multistranded lattice systems.

Funder

National Institute of General Medical Sciences

National Institutes of Health

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3