Enhancing poststroke hand movement recovery: Efficacy of RehabSwift, a personalized brain–computer interface system

Author:

Darvishi Sam12ORCID,Datta Gupta Anupam34ORCID,Hamilton-Bruce Anne5,Koblar Simon4,Baumert Mathias2ORCID,Abbott Derek2ORCID

Affiliation:

1. RehabSwift Pty Ltd , 10 Pulteney Street, The University of Adelaide, Adelaide, SA 5000 , Australia

2. School of Electrical and Electronic Engineering, The University of Adelaide , Adelaide, SA 5000 , Australia

3. Department of Rehabilitation Medicine, The Queen Elizabeth Hospital , Woodville, SA 5011 , Australia

4. Adelaide Medical School, The University of Adelaide , Adelaide, SA 5000 , Australia

5. Stroke Research Programme, Basil Hetzel Institute, The Queen Elizabeth Hospital, Central Adelaide Local Health Network , Woodville, SA 5011 , Australia

Abstract

Abstract This study explores the efficacy of our novel and personalized brain–computer interface (BCI) therapy, in enhancing hand movement recovery among stroke survivors. Stroke often results in impaired motor function, posing significant challenges in daily activities and leading to considerable societal and economic burdens. Traditional physical and occupational therapies have shown limitations in facilitating satisfactory recovery for many patients. In response, our study investigates the potential of motor imagery–based BCIs (MI-BCIs) as an alternative intervention. In this study, MI-BCIs translate imagined hand movements into actions using a combination of scalp-recorded electrical brain activity and signal processing algorithms. Our prior research on MI-BCIs, which emphasizes the benefits of proprioceptive feedback over traditional visual feedback and the importance of customizing the delay between brain activation and passive hand movement, led to the development of RehabSwift therapy. In this study, we recruited 12 chronic-stage stroke survivors to assess the effectiveness of our solution. The primary outcome measure was the Fugl-Meyer upper extremity (FMA-UE) assessment, complemented by secondary measures including the action research arm test, reaction time, unilateral neglect, spasticity, grip and pinch strength, goal attainment scale, and FMA-UE sensation. Our findings indicate a remarkable improvement in hand movement and a clinically significant reduction in poststroke arm and hand impairment following 18 sessions of neurofeedback training. The effects persisted for at least 4 weeks posttreatment. These results underscore the potential of MI-BCIs, particularly our solution, as a prospective tool in stroke rehabilitation, offering a personalized and adaptable approach to neurofeedback training.

Funder

Entrepreneurs’ Programme—Accelerating Commercialisation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3