A primal–dual data-driven method for computational optical imaging with a photonic lantern

Author:

Santos Garcia Carlos1,Larchevêque Mathilde1,O’Sullivan Solal1,Van Waerebeke Martin1,Thomson Robert R2,Repetti Audrey3ORCID,Pesquet Jean-Christophe1ORCID

Affiliation:

1. CVN, CentraleSupélec, Unversité Paris-Saclay , Gif sur Yvette 91190 , France

2. Institute of Photonics and Quantum Science, Heriot-Watt University , Edinburgh EH14 4AS , UK

3. School of Engineering and Physical Sciences and School of Mathematical and Computer Sciences, Heriot-Watt University , Edinburgh EH14 4AS , UK

Abstract

Abstract Optical fibers aim to image in vivo biological processes. In this context, high spatial resolution and stability to fiber movements are key to enable decision-making processes (e.g. for microendoscopy). Recently, a single-pixel imaging technique based on a multicore fiber photonic lantern has been designed, named computational optical imaging using a lantern (COIL). A proximal algorithm based on a sparsity prior, dubbed SARA-COIL, has been further proposed to solve the associated inverse problem, to enable image reconstructions for high resolution COIL microendoscopy. In this work, we develop a data-driven approach for COIL. We replace the sparsity prior in the proximal algorithm by a learned denoiser, leading to a plug-and-play (PnP) algorithm. The resulting PnP method, based on a proximal primal–dual algorithm, enables to solve the Morozov formulation of the inverse problem. We use recent results in learning theory to train a network with desirable Lipschitz properties, and we show that the resulting primal–dual PnP algorithm converges to a solution to a monotone inclusion problem. Our simulations highlight that the proposed data-driven approach improves the reconstruction quality over variational SARA-COIL method on both simulated and real data.

Funder

ANR

Royal Society of Edinburgh

EPSRC

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3