Cementing CO2 into C-S-H: A step toward concrete carbon neutrality

Author:

Stefaniuk Damian1ORCID,Hajduczek Marcin1ORCID,Weaver James C2,Ulm Franz J1ORCID,Masic Admir1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Massachusetts Institute of Technology , 77 Massachusetts Ave, Cambridge, MA 02139 , USA

2. Wyss Institute for Biologically Inspired Engineering, Harvard University , 3 Blackfan St, Boston, MA 02115 , USA

Abstract

Abstract Addressing the existing gap between currently available mitigation strategies for greenhouse gas emissions associated with ordinary Portland cement production and the 2050 carbon neutrality goal represents a significant challenge. In order to bridge this gap, one potential option is the direct gaseous sequestration and storage of anthropogenic CO2 in concrete through forced carbonate mineralization in both the cementing minerals and their aggregates. To better clarify the potential strategic benefits of these processes, here, we apply an integrated correlative time- and space-resolved Raman microscopy and indentation approach to investigate the underlying mechanisms and chemomechanics of cement carbonation over time scales ranging from the first few hours to several days using bicarbonate-substituted alite as a model system. In these reactions, the carbonation of transient disordered calcium hydroxide particles at the hydration site leads to the formation of a series of calcium carbonate polymorphs including disordered calcium carbonate, ikaite, vaterite, and calcite, which serve as nucleation sites for the formation of a calcium carbonate/calcium-silicate-hydrate (C-S-H) composite, and the subsequent acceleration of the curing process. The results from these studies reveal that in contrast to late-stage cement carbonation processes, these early stage (precure) out-of-equilibrium carbonation reactions do not compromise the material's structural integrity, while allowing significant quantities of CO2 (up to 15 w%) to be incorporated into the cementing matrix. The out-of-equilibrium carbonation of hydrating clinker thus provides an avenue for reducing the environmental footprint of cementitious materials via the uptake and long-term storage of anthropogenic CO2.

Publisher

Oxford University Press (OUP)

Reference21 articles.

1. Alternative materials could shrink concrete's Giant carbon footprint;Jacoby;Chem Eng News.,2020

2. Cement and steel—nine steps to net zero;Fennell;Nature,2022

3. Carbonation of cement-based materials: challenges and opportunities;Ashraf;Constr Build Mater.,2016

4. Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCC;von Greve-Dierfeld;Mater Struct,2020

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3