On shape forming by contractile filaments in the surface of growing tissues

Author:

Fratzl Peter12ORCID,Fischer F Dieter34,Zickler Gerald A34,Dunlop John W C56ORCID

Affiliation:

1. Department of Biomaterials , , Potsdam Science Park, 14476 Potsdam-Golm , Germany

2. Max Planck Institute of Colloids and Interfaces , , Potsdam Science Park, 14476 Potsdam-Golm , Germany

3. Institute of Mechanics , , 8700 Leoben , Austria

4. Montanuniversität Leoben , , 8700 Leoben , Austria

5. Morphophysics Group, Department of the Chemistry and Physics of Materials , , 5020 Salzburg , Austria

6. University of Salzburg , , 5020 Salzburg , Austria

Abstract

Abstract Growing tissues are highly dynamic, and flow on sufficiently long timescales due to cell proliferation, migration, and tissue remodeling. As a consequence, growing tissues can often be approximated as viscous fluids. This means that the shape of microtissues growing in vitro is governed by their surface stress state, as in fluid droplets. Recent work showed that cells in the near-surface region of fibroblastic or osteoblastic microtissues contract with highly oriented actin filaments, thus making the surface properties highly anisotropic, in contrast to what is expected for an isotropic fluid. Here, we develop a model that includes mechanical anisotropy of the surface generated by contractile fibers and we show that mechanical equilibrium requires contractile filaments to follow geodesic lines on the surface. Constant pressure in the fluid forces these contractile filaments to be along geodesics with a constant normal curvature. We then take this into account to determine equilibrium shapes of rotationally symmetric bodies subjected to anisotropic surface stress states and derive a family of surfaces of revolution. A comparison with recently published shapes of microtissues shows that this theory accurately predicts both the surface shape and the direction of the actin filaments on the surface.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Reference40 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3