Bending-driven patterning of solid inclusions in lipid membranes: Colloidal assembly and transitions in elastic 2D fluids

Author:

Xin Weiyue1ORCID,Santore Maria M2ORCID

Affiliation:

1. Department of Chemical Engineering, University of Massachusetts Amherst , Amherst, MA 01003 , USA

2. Department of Polymer Science and Engineering, University of Massachusetts Amherst , Amherst, MA 01003 , USA

Abstract

Abstract Biological or biomimetic membranes are examples within the larger material class of flexible ultrathin lamellae and contoured fluid sheets that require work or energy to impose bending deformations. Bending elasticity also dictates the interactions and assembly of integrated phases or molecular clusters within fluid lamellae, for instance enabling critical cell functions in biomembranes. More broadly, lamella and other thin fluids that integrate dispersed objects, inclusions, and phases behave as contoured 2D colloidal suspensions governed by elastic interactions. To elucidate the breadth of interactions and assembled patterns accessible through elastic interactions, we consider the bending elasticity-driven assembly of 1–10 μm solid plate-shaped Brownian domains (the 2D colloids), integrated into a fluid phospholipid membrane (the 2D fluid). Here, the fluid membranes of giant unilamellar vesicles, 20–50 μm in diameter, each contain 4–100 monodisperse plate-domains at an overall solid area fraction of 17 ± 3%. Three types of reversible plate arrangements are found: persistent vesicle-encompassing quasi-hexagonal lattices, persistent closely associated chains or concentrated lattices, and a dynamic disordered state. The interdomain distances evidence combined attractive and repulsive elastic interactions up to 10 μm, far exceeding the ranges of physio-chemical interactions. Bending contributions are controlled through membrane slack (excess area) producing, for a fixed composition, a sharp cooperative multibody transition in plate arrangement, while domain size and number contribute intricacy.

Funder

DOE

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3