Arc hopping dynamics induced by interfacial negative differential resistance

Author:

Huo Jindong1ORCID,Rontey Alex2ORCID,Wang Yifei1ORCID,Jacobs Linda3,Chen Qin4ORCID,Wang Ningzhen1ORCID,Ma Shilei1,Cao Yang12ORCID

Affiliation:

1. Electrical Insulation Research Center, Institute of Materials Science, University of Connecticut , Storrs, CT 06269, USA

2. Department of Electrical and Computer Engineering, University of Connecticut , Storrs, CT 06269, USA

3. ABB Industrial Connections & Solutions , Plainville, CT 06062, USA

4. Applied Materials , Gloucester, MA 01930, USA

Abstract

Abstract Pattern formation in plasma–solid interaction represents a great research challenge in many applications from plasma etching to surface treatment, whereby plasma attachments on electrodes (arc roots) are constricted to self-organized spots. Gliding arc discharge in a Jacob’s Ladder, exhibiting hopping dynamics, provides a unique window to probe the nature of pattern formation in plasma–surface interactions. In this work, we find that the existence of negative differential resistance (NDR) across the sheath is responsible for the observed hopping pattern. Due to NDR, the current density and potential drop behave as activator and inhibitor, the dynamic interactions of which govern the surface current density re-distribution and the formation of structured spots. In gliding arc discharges, new arc roots can form separately in front of the existing root(s), which happens periodically to constitute the stepwise hopping. From the instability phase-diagram analysis, the phenomenon that arc attachments tend to constrict itself spontaneously in the NDR regime is well explained. Furthermore, we demonstrate via a comprehensive magnetohydrodynamics (MHD) computation that the existence of a sheath NDR can successfully reproduce the arc hopping as observed in experiments. Therefore, this work uncovers the essential role of sheath NDR in the plasma–solid surface pattern formation and opens up a hitherto unexplored area of research for manipulating the plasma–solid interactions.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Reference46 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3