The reproducibility of COVID-19 data analysis: paradoxes, pitfalls, and future challenges

Author:

Serio Clelia Di123ORCID,Malgaroli Antonio1,Ferrari Paolo345ORCID,Kenett Ron S67ORCID

Affiliation:

1. Vita-Salute San Raffaele University, UniSR , Milan, Italy

2. University Centre of Statistics in the Biomedical Sciences CUSSB, UniSR , Milan, Italy

3. Biomedical Faculty, Università della Svizzera Italiana , Lugano, Switzerland

4. Ente Ospedaliero Cantonale , Lugano, Switzerland

5. Clinical School, University of New South Wales , Sydney, Australia

6. KPA,Samuel Neaman Institute, Technion , Haifa, Israel

7. University of Turin , Turin, Italy

Abstract

Abstract In the midst of the COVID-19 experience, we learned an important scientific lesson: knowledge acquisition and information quality in medicine depends more on “data quality” rather than “data quantity.” The large number of COVID-19 reports, published in a very short time, demonstrated that the most advanced statistical and computational tools cannot properly overcome the poor quality of acquired data. The main evidence for this observation comes from the poor reproducibility of results. Indeed, understanding the data generation process is fundamental when investigating scientific questions such as prevalence, immunity, transmissibility, and susceptibility. Most of COVID-19 studies are case reports based on “non probability” sampling and do not adhere to the general principles of controlled experimental designs. Such collected data suffers from many limitations when used to derive clinical conclusions. These include confounding factors, measurement errors and bias selection effects. Each of these elements represents a source of uncertainty, which is often ignored or assumed to provide an unbiased random contribution. Inference retrieved from large data in medicine is also affected by data protection policies that, while protecting patients’ privacy, are likely to reduce consistently usefulness of big data in achieving fundamental goals such as effective and efficient data-integration. This limits the degree of generalizability of scientific studies and leads to paradoxical and conflicting conclusions. We provide such examples from assessing the role of risks factors. In conclusion, new paradigms and new designs schemes are needed in order to reach inferential conclusions that are meaningful and informative when dealing with data collected during emergencies like COVID-19.

Publisher

Oxford University Press (OUP)

Reference47 articles.

1. How a torrent of COVID science changed research publishing-in seven charts;Else;Nature,2020

2. Information Quality

3. The role of statisticians in the response to COVID-19 in Israel - a holistic point of view, Israel;Dattner;Israel J Health Pol Res,2022

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3