Minimum complexity drives regulatory logic in Boolean models of living systems

Author:

Subbaroyan Ajay12ORCID,Martin Olivier C34ORCID,Samal Areejit12ORCID

Affiliation:

1. The Institute of Mathematical Sciences (IMSc) , Chennai 600113 , India

2. Homi Bhabha National Institute (HBNI) , Mumbai 400094 , India

3. Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2) , 91405 Orsay , France

4. Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2) , 91405 Orsay , France

Abstract

Abstract The properties of random Boolean networks have been investigated extensively as models of regulation in biological systems. However, the Boolean functions (BFs) specifying the associated logical update rules should not be expected to be random. In this contribution, we focus on biologically meaningful types of BFs, and perform a systematic study of their preponderance in a compilation of 2,687 functions extracted from published models. A surprising feature is that most of these BFs have odd “bias”, that is they produce “on” outputs for a total number of input combinations that is odd. Upon further analysis, we are able to explain this observation, along with the enrichment of read-once functions (RoFs) and its nested canalyzing functions (NCFs) subset, in terms of 2 complexity measures: Boolean complexity based on string lengths in formal logic, which is yet unexplored in biological contexts, and the so-called average sensitivity. RoFs minimize Boolean complexity and all such functions have odd bias. Furthermore, NCFs minimize not only the Boolean complexity but also the average sensitivity. These results reveal the importance of minimum complexity in the regulatory logic of biological networks.

Publisher

Oxford University Press (OUP)

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3