Independent metabolism of oligosaccharides is the keystone of synchronous utilization of cellulose and hemicellulose in Myceliophthora

Author:

Liu Jia12,Chen Meixin12ORCID,Gu Shuying12,Fan Rui12,Zhao Zhen12,Sun Wenliang12,Yao Yonghong12ORCID,Li Jingen12ORCID,Tian Chaoguang12ORCID

Affiliation:

1. Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308 , China

2. National Technology Innovation Center of Synthetic Biology , Tianjin 300308 , China

Abstract

Abstract The effective utilization of cellulose and hemicellulose, the main components of plant biomass, is a key technical obstacle that needs to be overcome for the economic viability of lignocellulosic biorefineries. Here, we firstly demonstrated that the thermophilic cellulolytic fungus Myceliophthora thermophila can simultaneously utilize cellulose and hemicellulose, as evidenced by the independent uptake and intracellular metabolism of cellodextrin and xylodextrin. When plant biomass serviced as carbon source, we detected the cellodextrin and xylodextrin both in cells and in the culture medium, as well as high enzyme activities related to extracellular oligosaccharide formation and intracellular oligosaccharide hydrolysis. Sugar consumption assay revealed that in contrast to inhibitory effect of glucose on xylose and cellodextrin/xylodextrin consumption in mixed-carbon media, cellodextrin and xylodextrin were synchronously utilized in this fungus. Transcriptomic analysis also indicated simultaneous induction of the genes involved in cellodextrin and xylodextrin metabolic pathway, suggesting carbon catabolite repression (CCR) is triggered by extracellular glucose and can be eliminated by the intracellular hydrolysis and metabolism of oligosaccharides. The xylodextrin transporter MtCDT-2 was observed to preferentially transport xylobiose and tolerate high cellobiose concentrations, which helps to bypass the inhibition of xylobiose uptake. Furthermore, the expression of cellulase and hemicellulase genes was independently induced by their corresponding inducers, which enabled this strain to synchronously utilize cellulose and hemicellulose. Taken together, the data presented herein will further elucidate the degradation of plant biomass by fungi, with implications for the development of consolidated bioprocessing-based lignocellulosic biorefinery.

Funder

Key Project of the Ministry of Science and Technology of China

Guangxi Science and Technology Major Program

National Natural Science Foundation of China

Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3