Fractured columnar small-world functional network organization in volumes of L2/3 of mouse auditory cortex

Author:

Bowen Zac12ORCID,Shilling-Scrivo Kelson34,Losert Wolfgang1ORCID,Kanold Patrick O356ORCID

Affiliation:

1. Institute for Physical Science and Technology, University of Maryland , College Park, MD 20742 , USA

2. Fraunhofer USA Center Mid-Atlantic , Riverdale, MD 20737 , USA

3. Department of Biology, University of Maryland , College Park, MD 20742 , USA

4. Department of Anatomy and Neurobiology, University of Maryland School of Medicine , Baltimore, MD 21230 , USA

5. Department of Biomedical Engineering, Johns Hopkins University , Baltimore, MD 20215 , USA

6. Kavli Neuroscience Discovery Institute, Johns Hopkins University , Baltimore, MD 20215 , USA

Abstract

Abstract The sensory cortices of the brain exhibit large-scale functional topographic organization, such as the tonotopic organization of the primary auditory cortex (A1) according to sound frequency. However, at the level of individual neurons, layer 2/3 (L2/3) A1 appears functionally heterogeneous. To identify if there exists a higher-order functional organization of meso-scale neuronal networks within L2/3 that bridges order and disorder, we used in vivo two-photon calcium imaging of pyramidal neurons to identify networks in three-dimensional volumes of L2/3 A1 in awake mice. Using tonal stimuli, we found diverse receptive fields with measurable colocalization of similarly tuned neurons across depth but less so across L2/3 sublayers. These results indicate a fractured microcolumnar organization with a column radius of ∼50 µm, with a more random organization of the receptive field over larger radii. We further characterized the functional networks formed within L2/3 by analyzing the spatial distribution of signal correlations (SCs). Networks show evidence of Rentian scaling in physical space, suggesting effective spatial embedding of subnetworks. Indeed, functional networks have characteristics of small-world topology, implying that there are clusters of functionally similar neurons with sparse connections between differently tuned neurons. These results indicate that underlying the regularity of the tonotopic map on large scales in L2/3 is significant tuning diversity arranged in a hybrid organization with microcolumnar structures and efficient network topologies.

Funder

NIH

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3