Learning increases growth and reduces inequality in shared noisy environments

Author:

Kemp Jordan T1ORCID,Bettencourt Luís M A23ORCID

Affiliation:

1. Department of Physics, University of Chicago , 5720 S Ellis Ave #201, Chicago, 60637 IL , USA

2. Department of Ecology & Evolution, University of Chicago , 1101 E 57th St, Chicago, 60637 IL , USA

3. Mansueto Institute for Urban Innovation, University of Chicago , 1155 E 60th Street, Chicago, 60637 IL , USA

Abstract

Abstract Stochastic multiplicative dynamics characterize many complex natural phenomena such as selection and mutation in evolving populations, and the generation and distribution of wealth within social systems. Population heterogeneity in stochastic growth rates has been shown to be the critical driver of wealth inequality over long time scales. However, we still lack a general statistical theory that systematically explains the origins of these heterogeneities resulting from the dynamical adaptation of agents to their environment. In this paper, we derive population growth parameters resulting from the general interaction between agents and their environment, conditional on subjective signals each agent perceives. We show that average wealth-growth rates converge, under specific conditions, to their maximal value as the mutual information between the agent’s signal and the environment, and that sequential Bayesian inference is the optimal strategy for reaching this maximum. It follows that when all agents access the same statistical environment, the learning process attenuates growth rate disparities, reducing the long-term effects of heterogeneity on inequality. Our approach shows how the formal properties of information underlie general growth dynamics across social and biological phenomena, including cooperation and the effects of education and learning on life history choices.

Funder

University of Chicago

National Science Foundation Graduate Research Fellowship

Publisher

Oxford University Press (OUP)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3