Affiliation:
1. Tata Institute of Fundamental Research , Hyderabad, 500046 Telangana , India
Abstract
Abstract
We show through simulations of amorphous solids prepared in open-boundary conditions that they possess significantly fewer low-frequency vibrational modes compared to their periodic boundary counterparts. Specifically, using measurements of the vibrational density of states, we find that the D(ω)∼ω4 law changes to D(ω)∼ωδ with δ≈5 in two dimensions and δ≈4.5 in three dimensions. Crucially, this enhanced stability is achieved when utilizing slow annealing protocols to generate solid configurations. We perform an anharmonic analysis of the minima corresponding to the lowest frequency modes in such open-boundary systems and discuss their correlation with the density of states. A study of various system sizes further reveals that small systems display a higher degree of localization in vibrations. Lastly, we confine open-boundary solids in order to introduce macroscopic stresses in the system, which are absent in the unconfined system and find that the D(ω)∼ω4 behavior is recovered.
Funder
Swarna Jayanti Fellowship
SERB-MATRICS
TIFR
Publisher
Oxford University Press (OUP)