Sustained degradation of hyaluronic acid using an in situ forming implant

Author:

Hopkins Kelsey1,Buno Kevin1,Romick Natalie1,Freitas dos Santos Antonio Carlos23,Tinsley Samantha4,Wakelin Elizabeth1,Kennedy Jacqueline1,Ladisch Michael23,Allen-Petersen Brittany L45ORCID,Solorio Luis15ORCID

Affiliation:

1. Weldon School of Biomedical Engineering, Purdue University , West Lafayette, IN 47907 , USA

2. Department of Agricultural and Biological Engineering, Purdue University , West Lafayette, IN 47907 , USA

3. Laboratory of Renewable Resources Engineering, Purdue University , West Lafayette, IN 47907 , USA

4. Department of Biological Sciences, Purdue University , West Lafayette, IN 47907 , USA

5. Center for Cancer Research, Purdue University , West Lafayette, IN 47907 , USA

Abstract

Abstract In pancreatic cancer, excessive hyaluronic acid (HA) in the tumor microenvironment creates a viscous stroma, which reduces systemic drug transport into the tumor and correlates with poor patient prognosis. HA can be degraded through both enzymatic and nonenzymatic methods to improve mass transport properties. Here, we use an in situ forming implant to provide sustained degradation of HA directly at a local, targeted site. We formulated and characterized an implant capable of sustained release of hyaluronidase (HAase) using 15 kDa poly(lactic-co-glycolic) acid and bovine testicular HAase. The implant releases bioactive HAase to degrade the HA through enzymatic hydrolysis at early timepoints. In the first 24 h, 17.9% of the HAase is released, which can reduce the viscosity of a 10 mg/mL HA solution by 94.1% and deplete the HA content within primary human pancreatic tumor samples and ex vivo murine tumors. At later timepoints, as lower quantities of HAase are released (51.4% released in total over 21 d), the degradation of HA is supplemented by the acidic by-products that accumulate as a result of implant degradation. Acidic conditions degrade HA through nonenzymatic methods. This formulation has potential as an intratumoral injection to allow sustained degradation of HA at the pancreatic tumor site.

Funder

Purdue University

Publisher

Oxford University Press (OUP)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3