A kirigami-enabled electrochromic wearable variable-emittance device for energy-efficient adaptive personal thermoregulation

Author:

Chen Ting-Hsuan1ORCID,Hong Yaoye2,Fu Ching-Tai13,Nandi Ankita14ORCID,Xie Wanrong15,Yin Jie2ORCID,Hsu Po-Chun16

Affiliation:

1. Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University , Durham, NC 27708 , USA

2. Department of Mechanical and Aerospace Engineering, North Carolina State University , Raleigh, NC 27695 , USA

3. Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California , Los Angeles, CA 90089 , USA

4. Department of Applied Physics and Materials Science, California Institute of Technology , Pasadena, CA 91125 , USA

5. Department of Applied Physical Sciences, University of North Carolina at Chapel Hill , Chapel Hill, NC 27599 , USA

6. Pritzker School of Molecular Engineering, The University of Chicago , Chicago, IL 60637 , USA

Abstract

Abstract For centuries, people have put effort to improve the thermal performance of clothing to adapt to varying temperatures. However, most clothing we wear today only offers a single-mode insulation. The adoption of active thermal management devices, such as resistive heaters, Peltier coolers, and water recirculation, is limited by their excessive energy consumption and form factor for long-term, continuous, and personalized thermal comfort. In this paper, we developed a wearable variable-emittance (WeaVE) device, enabling the tunable radiative heat transfer coefficient to fill the missing gap between thermoregulation energy efficiency and controllability. WeaVE is an electrically driven, kirigami-enabled electrochromic thin-film device that can effectively tune the midinfrared thermal radiation heat loss of the human body. The kirigami design provides stretchability and conformal deformation under various modes and exhibits excellent mechanical stability after 1,000 cycles. The electronic control enables programmable personalized thermoregulation. With less than 5.58 mJ/cm2 energy input per switching, WeaVE provides 4.9°C expansion of the thermal comfort zone, which is equivalent to a continuous power input of 33.9 W/m2. This nonvolatile characteristic substantially decreases the required energy while maintaining the on-demand controllability, thereby providing vast opportunities for the next generation of smart personal thermal managing fabrics and wearable technologies.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3