Release of ballast material during sea-ice melt enhances carbon export in the Arctic Ocean

Author:

Swoboda Steffen1ORCID,Krumpen Thomas2ORCID,Nöthig Eva-Maria2ORCID,Metfies Katja2ORCID,Ramondenc Simon12ORCID,Wollenburg Jutta2ORCID,Fahl Kirsten2ORCID,Peeken Ilka2ORCID,Iversen Morten12

Affiliation:

1. MARUM—Center for Marine Environmental Sciences, University of Bremen , 28359 Bremen , Germany

2. Alfred Wegener Institute, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research , 27570 Bremerhaven , Germany

Abstract

Abstract Globally, the most intense uptake of anthropogenic carbon dioxide (CO2) occurs in the Atlantic north of 50°N, and it has been predicted that atmospheric CO2 sequestration in the Arctic Ocean will increase as a result of ice-melt and increased primary production. However, little is known about the impact of pan-Arctic sea-ice decline on carbon export processes. We investigated the potential ballasting effect of sea-ice derived material on settling aggregates and carbon export in the Fram Strait by combining 13 years of vertical flux measurements with benthic eDNA analysis, laboratory experiments, and tracked sea-ice distributions. We show that melting sea-ice in the Fram Strait releases cryogenic gypsum and terrigenous material, which ballasts sinking organic aggregates. As a result, settling velocities of aggregates increased ≤10-fold, resulting in ≤30% higher carbon export in the vicinity of the melting ice-edge. Cryogenic gypsum is formed in first-year sea-ice, which is predicted to increase as the Arctic is warming. Simultaneously, less sea-ice forms over the Arctic shelves, which is where terrigenous material is incorporated into sea-ice. Supporting this, we found that terrigenous fluxes from melting sea-ice in the Fram Strait decreased by >80% during our time-series. Our study suggests that terrigenous flux will eventually cease when enhanced sea-ice melt disrupts trans-Arctic sea-ice transport and thus, limit terrigenous-ballasted carbon flux. However, the predicted increase in Arctic primary production and gypsum formation may enhance gypsum-ballasted carbon flux and compensate for lowered terrigenous fluxes. It is thus unclear if sea-ice loss will reduce carbon export in the Arctic Ocean.

Funder

DFG-Research Center

Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research

German Helmholtz Association

German Federal Ministry of Education and Research

Helmholtz Excellence Network

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3