Nanoscale goldbeating: Solid-state transformation of 0D and 1D gold nanoparticles to anisotropic 2D morphologies

Author:

Tanjil Md Rubayat-E1ORCID,Gupta Tanuj2ORCID,Gole Matthew T3ORCID,Suero Keegan P1ORCID,Yin Zhewen1ORCID,McCleeary Donald J1ORCID,Douglas Ossie R T1ORCID,Kincanon Maegen M3ORCID,Rudawski Nicholas G4ORCID,Anderson Alissa B5ORCID,Murphy Catherine J3ORCID,Zhao Huijuan2ORCID,Wang Michael Cai167ORCID

Affiliation:

1. Department of Mechanical Engineering, University of South Florida , Tampa, FL 33620 , USA

2. Department of Mechanical Engineering, Clemson University , Clemson, SC 29634-0921 , USA

3. Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, IL 61801 , USA

4. Herbert Wertheim College of Engineering Research Service Centers, University of Florida , Gainesville, FL 32611 , USA

5. Department of Chemistry, University of South Florida , Tampa, FL 33620 , USA

6. Department of Medical Engineering, University of South Florida , Tampa, FL 33620 , USA

7. Department of Chemical, Biological, and Materials Engineering, University of South Florida , Tampa, FL 33620 , USA

Abstract

Abstract Goldbeating is the ancient craft of thinning bulk gold (Au) into gossamer leaves. Pioneered by ancient Egyptian craftsmen, modern mechanized iterations of this technique can fabricate sheets as thin as ∼100 nm. We take inspiration from this millennia-old craft and adapt it to the nanoscale regime, using colloidally synthesized 0D/1D Au nanoparticles (AuNPs) as highly ductile and malleable nanoscopic Au ingots and subjecting them to solid-state, uniaxial compression. The applied stress induces anisotropic morphological transformation of AuNPs into 2D leaf form and elucidates insights into metal nanocrystal deformation at the extreme length scales. The induced 2D morphology is found to be dependent on the precursor 0D/1D NP morphology, size (0D nanosphere diameter and 1D nanorod diameter and length), and their on-substrate arrangement (e.g., interparticle separation and packing order) prior to compression. Overall, this versatile and generalizable solid-state compression technique enables new pathways to synthesize and investigate the anisotropic morphological transformation of arbitrary NPs and their resultant emergent phenomena.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3