An intrinsic polymer electrolyte via in situ cross-linked for solid lithium-based batteries with high performance

Author:

Li Chen1,Hu Ajuan1,Zhang Xinan1,Ni Hongbin1,Fan Jingmin1,Yuan Ruming1,Zheng Mingsen1,Dong Quanfeng1ORCID

Affiliation:

1. Collaborative Innovation Centre of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , No. 422, Siming South Road, Xiamen, Fujian 361005 , China

Abstract

Abstract Since the introduction of poly(ethylene oxide) (PEO)-based polymer electrolytes more than 50 years, few other real polymer electrolytes with commercial application have emerged. Due to the low ion conductivity at room temperature, the PEO-based electrolytes cannot meet the application requirements. Most of the polymer electrolytes reported in recent years are in fact colloidal/composite electrolytes with plasticizers and fillers, not genuine electrolytes. Herein, we designed and synthesized a cross-linked polymer with a three-dimensional (3D) mesh structure which can dissolve the Li bis(trifluoromethylsulfonyl)imide (LiTFSI) salt better than PEO due to its unique 3D structure and rich oxygen-containing chain segments, thus forming an intrinsic polymer electrolyte (IPE) with ionic conductivity of 0.49 mS cm−1 at room temperature. And it can hinder the migration of large anions (e.g. TFSI−) in the electrolyte and increase the energy barrier to their migration, achieving Li+ migration numbers (tLi+) of up to 0.85. At the same time, IPE has good compatibility with lithium metal cathode and LiFePO4 (LFP) cathode, with stable cycles of more than 2,000 and 700 h in Li//Li symmetric batteries at 0.2 and 0.5 mAh cm−2 current densities, respectively. In addition, the Li/IPE/LFP batteries show the capacity retention >90% after 300 cycles at 0.5 C current density. This polymer electrolyte will be a pragmatic way to achieve commercializing all-solid-state, lithium-based batteries.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3