Spin versions of the complex trigonometric Ruijsenaars–Schneider model from cyclic quivers

Author:

Fairon Maxime1

Affiliation:

1. School of Mathematics and Statistics, University of Glasgow, University Place, Glasgow, G12 8QQ, UK

Abstract

AbstractWe study multiplicative quiver varieties associated to specific extensions of cyclic quivers with $m\geq 2$ vertices. Their global Poisson structure is characterized by quasi-Hamiltonian algebras related to these quivers, which were studied by Van den Bergh for an arbitrary quiver. We show that the spaces are generically isomorphic to the case $m=1$ corresponding to an extended Jordan quiver. This provides a set of local coordinates, which we use to interpret integrable systems as spin variants of the trigonometric Ruijsenaars–Schneider (RS) system. This generalizes to new spin cases recent works on classical integrable systems in the RS family.

Funder

University of Leeds 110 Anniversary Research Scholarship

Publisher

Oxford University Press (OUP)

Reference48 articles.

1. Multiplicative quiver varieties and generalised Ruijsenaars–Schneider models;Chalykh,;J. Geom. Phys.,,2017

2. Collisions of Calogero–Moser particles and an adelic Grassmannian (With an appendix by I. G. Macdonald);Wilson,;Invent. Math.,1998

3. Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras;Nakajima,;Duke Math. J.,1994

4. Noncommutative geometry and quiver algebras;Crawley-Boevey,;Adv. Math.,2007

5. Non-commutative symplectic geometry, quiver varieties, and operads;Ginzburg,;Math. Res. Lett.,2001

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3