Overexpression of PtHMGR enhances drought and salt tolerance of poplar

Author:

Wei Hui1,Movahedi Ali1,Xu Chen12,Sun Weibo1,Li Lingling1,Wang Pu1,Li Dawei1,Zhuge Qiang1

Affiliation:

1. Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China

2. Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Xiaozhuang University, Nanjing, China

Abstract

Abstract Background and Aims Soil salinization and aridification are swiftly engulfing the limited land resources on which humans depend, restricting agricultural production. Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is important in the biosynthesis of terpenoids, which are involved in plant growth, development and responses to environmental stresses. This study aimed to provide guidance for producing salt- and drought-resistant poplar. Methods A protein expression system was used to obtain PtHMGR protein, and high-performance liquid chromatography was used to detect the activity of PtHMGR protein in vitro. In addition, a simplified version of the leaf infection method was used for transformation of ‘Nanlin895’ poplar (Populus×euramericana). qRT–PCR was used to identify expression levels of genes. Key Results PtHMGR catalysed a reaction involving HMG-CoA and NADPH to form mevalonate. Overexpression of PtHMGR in Populus × euramericana ‘Nanlin895’ improved drought and salinity tolerance. In the presence of NaCl and PEG6000, the rates of rooting and survival of PtHMGR-overexpressing poplars were higher than those of wild-type poplars. The transgenic lines also exhibited higher proline content and peroxidase and superoxide dismutase activities, and a lower malondialdehyde level under osmotic stress. In addition, the expression of genes related to reactive oxygen species (ROS) scavenging and formation was altered by osmotic stress. Moreover, the effect of osmotic stress on transcript levels of stress-related genes differed between the transgenic and wild-type poplars. Conclusion PtHMGR catalysed a reaction involving HMG-CoA and NADPH to form mevalonate in vitro. Overexpression of PtHMGR promoted root development, increased the expression of ROS scavenging-related genes, decreased the expression of ROS formation-related genes, and increased the activity of antioxidant enzymes in transgenic poplars, enhancing their tolerance of osmotic stress. In addition, overexpression of PtHMGR increased expression of the stress-related genes KIN1, COR15 and AAO3 and decreased that of ABI, MYB, MYC2 and RD22, enhancing the stress resistance of poplar.

Funder

National Key Program on Transgenic Research

National Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3