Affiliation:
1. Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
2. Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Xiaozhuang University, Nanjing, China
Abstract
Abstract
Background and Aims
Soil salinization and aridification are swiftly engulfing the limited land resources on which humans depend, restricting agricultural production. Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is important in the biosynthesis of terpenoids, which are involved in plant growth, development and responses to environmental stresses. This study aimed to provide guidance for producing salt- and drought-resistant poplar.
Methods
A protein expression system was used to obtain PtHMGR protein, and high-performance liquid chromatography was used to detect the activity of PtHMGR protein in vitro. In addition, a simplified version of the leaf infection method was used for transformation of ‘Nanlin895’ poplar (Populus×euramericana). qRT–PCR was used to identify expression levels of genes.
Key Results
PtHMGR catalysed a reaction involving HMG-CoA and NADPH to form mevalonate. Overexpression of PtHMGR in Populus × euramericana ‘Nanlin895’ improved drought and salinity tolerance. In the presence of NaCl and PEG6000, the rates of rooting and survival of PtHMGR-overexpressing poplars were higher than those of wild-type poplars. The transgenic lines also exhibited higher proline content and peroxidase and superoxide dismutase activities, and a lower malondialdehyde level under osmotic stress. In addition, the expression of genes related to reactive oxygen species (ROS) scavenging and formation was altered by osmotic stress. Moreover, the effect of osmotic stress on transcript levels of stress-related genes differed between the transgenic and wild-type poplars.
Conclusion
PtHMGR catalysed a reaction involving HMG-CoA and NADPH to form mevalonate in vitro. Overexpression of PtHMGR promoted root development, increased the expression of ROS scavenging-related genes, decreased the expression of ROS formation-related genes, and increased the activity of antioxidant enzymes in transgenic poplars, enhancing their tolerance of osmotic stress. In addition, overexpression of PtHMGR increased expression of the stress-related genes KIN1, COR15 and AAO3 and decreased that of ABI, MYB, MYC2 and RD22, enhancing the stress resistance of poplar.
Funder
National Key Program on Transgenic Research
National Science Foundation of China
Publisher
Oxford University Press (OUP)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献