Mycoheterotrophic Epirixanthes (Polygalaceae) has a typical angiosperm mitogenome but unorthodox plastid genomes

Author:

Petersen G12,Darby H34,Lam V K Y34,Pedersen H Æ2,Merckx V S F T5,Zervas A26,Seberg O2,Graham S W34

Affiliation:

1. Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden

2. Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark

3. Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada

4. UBC Botanical Garden & Centre for Plant Research, University of British Columbia, Vancouver, British Columbia, Canada

5. Naturalis Biodiversity Centre, Leiden, The Netherlands

6. Department of Environmental Science, Aarhus University, Denmark

Abstract

Abstract Background and Aims Fully mycoheterotrophic plants derive carbon and other nutrients from root-associated fungi and have lost the ability to photosynthesize. While mycoheterotroph plastomes are often degraded compared with green plants, the effect of this unusual symbiosis on mitochondrial genome evolution is unknown. By providing the first complete organelle genome data from Polygalaceae, one of only three eudicot families that developed mycoheterotrophy, we explore how both organellar genomes evolved after loss of photosynthesis. Methods We sequenced and assembled four complete plastid genomes and a mitochondrial genome from species of Polygalaceae, focusing on non-photosynthetic Epirixanthes. We compared these genomes with those of other mycoheterotroph and parasitic plant lineages, and assessed whether organelle genes in Epirixanthes experienced relaxed or intensified selection compared with autotrophic relatives. Key Results Plastomes of two species of Epirixanthes have become substantially degraded compared with that of autotrophic Polygala. Although the lack of photosynthesis is presumably homologous in the genus, the surveyed Epirixanthes species have marked differences in terms of plastome size, structural rearrangements, gene content and substitution rates. Remarkably, both apparently replaced a canonical plastid inverted repeat with large directly repeated sequences. The mitogenome of E. elongata incorporated a considerable number of fossilized plastid genes, by intracellular transfer from an ancestor with a less degraded plastome. Both plastid and mitochondrial genes in E. elongata have increased substitution rates, but the plastid genes of E. pallida do not. Despite this, both species have similar selection patterns operating on plastid housekeeping genes. Conclusions Plastome evolution largely fits with patterns of gene degradation seen in other heterotrophic plants, but includes highly unusual directly duplicated regions. The causes of rate elevation in the sequenced Epirixanthes mitogenome and of rate differences in plastomes of related mycoheterotrophic species are not currently understood.

Funder

Danish Council for Independent Research

Natural Sciences and Engineering Research

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3