Decomposition analysis on soybean productivity increase under elevated CO2 using 3-D canopy model reveals synergestic effects of CO2 and light in photosynthesis

Author:

Song Qingfeng1,Srinivasan Venkatraman23,Long Steve P24,Zhu Xin-Guang1

Affiliation:

1. National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China

2. Departments of Crop Sciences and of Plant Biology, Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA

3. Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India

4. Lancaster Environment Center, Lancaster University, Lancaster, UK

Abstract

Abstract Background and Aims Understanding how climate change influences crop productivity helps in identifying new options to increase crop productivity. Soybean is the most important dicotyledonous seed crop in terms of planting area. Although the impacts of elevated atmospheric [CO2] on soybean physiology, growth and biomass accumulation have been studied extensively, the contribution of different factors to changes in season-long whole crop photosynthetic CO2 uptake [gross primary productivity (GPP)] under elevated [CO2] have not been fully quantified. Methods A 3-D canopy model combining canopy 3-D architecture, ray tracing and leaf photosynthesis was built to: (1) study the impacts of elevated [CO2] on soybean GPP across a whole growing season; (2) dissect the contribution of different factors to changes in GPP; and (3) determine the extent, if any, of synergism between [CO2] and light on changes in GPP. The model was parameterized from measurements of leaf physiology and canopy architectural parameters at the soybean Free Air CO2 Enrichment (SoyFACE) facility in Champaign, Illinois. Key Results Using this model, we showed that both a CO2 fertilization effect and changes in canopy architecture contributed to the large increase in GPP while acclimation in photosynthetic physiological parameters to elevated [CO2] and altered leaf temperature played only a minor role in the changes in GPP. Furthermore, at early developmental stages, elevated [CO2] increased leaf area index which led to increased canopy light absorption and canopy photosynthesis. At later developmental stages, on days with high ambient light levels, the proportion of leaves in a canopy limited by Rubisco carboxylation increased from 12.2 % to 35.6 %, which led to a greater enhancement of elevated [CO2] to GPP. Conclusions This study develops a new method to dissect the contribution of different factors to responses of crops under climate change. We showed that there is a synergestic effect of CO2 and light on crop growth under elevated CO2 conditions.

Funder

Bill and Melinda Gates Foundation

National Natural Science Foundation of China

Ministry of Science and Technology

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3