Symbiosis at its limits: ecophysiological consequences of lichenization in the genus Prasiola in Antarctica

Author:

Fernández-Marín Beatriz121,López-Pozo Marina1,Perera-Castro Alicia V3,Arzac Miren Irati1,Sáenz-Ceniceros Ana1,Colesie Claudia4,de los Ríos Asunción5,Sancho Leo G6,Pintado Ana6,Laza José M7,Pérez-Ortega Sergio8,García-Plazaola José I1

Affiliation:

1. Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain

2. Department of Botany, Ecology and Physiology, University of La Laguna (ULL), La Laguna, Canarias, Spain

3. Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Palma, Illes Balears, Spain

4. Global Change Institute, School of GeoSciences, University of Edinburgh, Edinburgh, UK

5. Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain

6. Botany Section, Fac. Farmacia, Universidad Complutense, Madrid, Spain

7. Laboratory of Macromolecular Chemistry (Labquimac), Department of Physical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Spain

8. Real Jardín Botánico (RJB-CSIC), Madrid, Spain

Abstract

Abstract Background and Aims Lichens represent a symbiotic relationship between at least one fungal and one photosynthetic partner. The association between the lichen-forming fungus Mastodia tessellata (Verrucariaceae) and different species of Prasiola (Trebouxiophyceae) has an amphipolar distribution and represents a unique case study for the understanding of lichen symbiosis because of the macroalgal nature of the photobiont, the flexibility of the symbiotic interaction and the co-existence of free-living and lichenized forms in the same microenvironment. In this context, we aimed to (1) characterize the photosynthetic performance of co-occurring populations of free-living and lichenized Prasiola and (2) assess the effect of the symbiosis on water relations in Prasiola, including its tolerance of desiccation and its survival and performance under sub-zero temperatures. Methods Photochemical responses to irradiance, desiccation and freezing temperature and pressure–volume curves of co-existing free-living and lichenized Prasiola thalli were measured in situ in Livingston Island (Maritime Antarctica). Analyses of photosynthetic pigment, glass transition and ice nucleation temperatures, surface hydrophobicity extent and molecular analyses were conducted in the laboratory. Key Results Free-living and lichenized forms of Prasiola were identified as two different species: P. crispa and Prasiola sp., respectively. While lichenization appears to have no effect on the photochemical performance of the alga or its tolerance of desiccation (in the short term), the symbiotic lifestyle involves (1) changes in water relations, (2) a considerable decrease in the net carbon balance and (3) enhanced freezing tolerance. Conclusions Our results support improved tolerance of sub-zero temperature as the main benefit of lichenization for the photobiont, but highlight that lichenization represents a delicate equilibrium between a mutualistic and a less reciprocal relationship. In a warmer climate scenario, the spread of the free-living Prasiola to the detriment of the lichen form would be likely, with unknown consequences for Maritime Antarctic ecosystems.

Funder

Spanish Ministry of Economy and Competitiveness

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3