A review of ultrawide bandgap materials: properties, synthesis and devices

Author:

Xu Mingfei1ORCID,Wang Dawei2,Fu Kai1,Mudiyanselage Dinusha Herath2,Fu Houqiang2,Zhao Yuji1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Rice University , Houston, TX 77005, USA

2. Department of Electrical and Computer Engineering, Iowa State University , Ames, IA 50011, USA

Abstract

AbstractUltrawide bandgap (UWBG) materials such as diamond, Ga2O3, hexagonal boron nitride (h-BN) and AlN, are a new class of semiconductors that possess a wide range of attractive properties, including very large bandgap, high critical electric field, high carrier mobility and chemical inertness. Due to these outstanding characteristics, UWBG materials are promising candidates to enable high-performance devices for power electronics, ultraviolet photonics, quantum sensing and quantum computing applications. Despite their great potential, the research of UWBG semiconductors is still at a nascent stage and represents a challenging interdisciplinary research area of physics, materials science and devices engineering. In this review, the material properties, synthesis methods and device applications of UWBG semiconductors diamond, Ga2O3, h-BN and AlN will be presented and their recent progress, challenges and research opportunities will be discussed.

Funder

US Department of Energy (DOE), Office of Science, Basic Energy Sciences

Publisher

Oxford University Press (OUP)

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3