Metal-based porous hydrogels for highly conductive biomaterial scaffolds

Author:

Tringides Christina M1234ORCID,Boulingre Marjolaine35,Mooney David J23

Affiliation:

1. Program in Biophysics, Harvard University , Cambridge MA 02138, USA

2. Wyss Institute for Biologically Inspired Engineering, Harvard University , Cambridge MA 02115, USA

3. John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge MA 02138, USA

4. Harvard–MIT Division in Health Sciences and Technology, Massachusetts Institute of Technology , Cambridge MA 02142, USA

5. Department of Bioengineering, Imperial College London , London SW7 2BP, UK

Abstract

Abstract Multielectrode arrays are fabricated from thin films of highly conductive and ductile metals, which cannot mimic the natural environment of biological tissues. These properties limit the conformability of the electrode to the underlying target tissue and present challenges in developing seamless interfaces. By introducing porous, hydrogel materials that are embedded with metal additives, highly conductive hydrogels can be formed. Tuning the hydrogel composition, % volume and aspect ratio of different additive(s), and the processing conditions of these composite materials can alter the mechanical and electrical properties. The resulting materials have a high surface area and can be used as biomaterial scaffolds to support the growth of macrophages for 5 days. Further optimization can enable the use of the materials for the electrodes in implantable arrays, or as living electrode platforms, to study and modulate various cellular cultures. These advancements would benefit both in vivo and in vitro applications of tissue engineering.

Funder

Center for Nanoscale Systems at Harvard University

Publisher

Oxford University Press (OUP)

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3