Promotion effect of nitrogen-doped functional carbon nanodots on the early growth stage of plants

Author:

Chen Qiong1,Ren Xiaohua2,Li Yuqian3,Liu Beibei1,Wang Xiuli3,Tu Jiangping3,Guo Zhijiang4,Jin Gong4,Min Guanghui1,Ci Lijie15ORCID

Affiliation:

1. Research Center for Carbon Nanomaterials, Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China

2. School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China

3. State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

4. Beijing Xinna International Hi-Tech Material Co., Ltd., Beijing 100076, China

5. School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China

Abstract

Abstract The objective of this paper is to study the effects of nitrogen-doped functional carbon nanodots (N-FCNs) on the early growth stage of plants. Hydrosoluble and biocompatible N-FCNs with high content of available N (ammonium and amino groups) and carboxyl groups are synthesized by a super green electrochemical method. N-FCNs universally express good eurytopic influence on different species of plants by inducing seeds germination, promoting root development, biomass accumulation, root cell length, chlorophyll level and transpiration of young seedlings. When functional carbon nanodots without N doping (FCNs) promote tomato and corn seeds germination rate by 92.4% and 76.2% maximally, N-FCNs could further improve the germination rate by about 17.0% and 25.5%. N-FCNs can even significantly raise the green vegetable (pakchoi) yield to 2.1 and 1.4 times on the 18th and 30th day. Leaf chlorophyll content is also increased to 1.36 and 1.55 times compared with FCNs treated group and the control group, respectively. The promotion effect of the nanodots is apparently depended on their composition, nanostructure, as well as plant species and age. Nanoscale structure and abundant hydrophilic functional groups can enable N-FCNs regulating the seed germination and plant growth by promoting the uptake and transportation of water and nutrients. The accumulation and transport of N-FCNs are investigated, which reveals N-FCNs are friendly to cells because they are absorbed and transported through nonprotoplast pathway in plant. As a result, N-FCNs have great potential for horticulture application as a biocompatible nano-medium to regulate both metabolism and early development of plants.

Funder

High-Level Talents’ Discipline Construction Fund of Shandong University

Shandong Provincial Science and Technology Major Project

Fundamental Research Funds of Shandong University

Natural Science Foundation of Shandong Province

Publisher

Oxford University Press (OUP)

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3