Fermentation of liquid feed with lactic acid bacteria reduces dry matter losses, lysine breakdown, formation of biogenic amines, and phytate-phosphorus

Author:

Lau Nicole12,Hummel Jürgen2,Kramer Ewald1,Hünerberg Martin2

Affiliation:

1. ISF GmbH Schaumann Forschung, Pinneberg 25421, Germany

2. Department of Animal Sciences, University of Goettingen, Goettingen 37077, Germany

Abstract

Abstract This study investigated the fermentation of liquid feed for pigs and the effect of lactic acid bacteria (LAB) supplementation on fermentation rate, dry matter losses (DML), formation of biogenic amines, and degradation of phytate-P. The basal substrate in all three in vitro batch experiments consisted of 50% canola meal, 25% wheat, and 25% barley. The mixed substrates were adjusted to a dry matter (DM) content of 28.4% and fermented in 1-liter vessels at 37 °C for 24 h. Experiment 1 focused on changes in pH profiles over time. Treatments were as follows: 1) liquid feed without additive (control) and 2) liquid feed supplemented with a mixture of Lactobacillus plantarum, Pediococcus pentosaceus, and Lactobacillus lactis (adLAB) at 2.0 × 105 CFU/g liquid feed (wet wt.; n = 8). Substrate pH was measured every 2 h. Experiment 2 focused on DML and the impact of fermentation on phytate-P. Treatments were identical to experiment 1 (control and adLAB; n = 8). Measured parameters included concentration of lactic acid, acetic acid, ethanol, and phytate-P, and DML after 24 h of fermentation. Counts of molds, Enterobobacteriaceae, yeasts, and LAB were determined in one combined sample of all replicates. Dry matter losses were lower in LAB-supplemented fermentations (5.89%) compared to the control (11.8%; P < 0.001). Supplementation with LAB reduced the phytate-P content (2.66 g/kg DM) compared to the control (3.07 g/kg DM; P = 0.002). Experiment 3 evaluated DML and the impact of fermentation on formation of biogenic amines. Treatments were as follows: 1) control, 2) adLAB (2.0 × 105 CFU LAB/g liquid feed), 3) adLys (0.60% DM supplemented lysine), and 4) adLAB+Lys (combination of adLAB and adLys; n = 8). The fermentation of adLys resulted in a nearly complete breakdown of supplemented lysine, whereas only 10% of supplemented lysine was lost in adLAB+Lys. Furthermore, all adLys samples tested positive for cadaverine (mean concentration 0.89% DM), whereas no adLAB samples contained cadaverine above the detection limit (P < 0.001). Results indicate that DML is reduced in fermentations supplemented with homofermentative LAB. Fermentation of liquid feed with homofermentative LAB can effectively reduce the degradation of supplemental lysine and has the potential to further improve P availability.

Funder

Irene Schaumann Research Society

Publisher

Oxford University Press (OUP)

Subject

General Veterinary,Animal Science and Zoology

Reference38 articles.

1. The effect of temperature on the growth and persistence of Salmonella in fermented liquid pig feed;Beal;Int. J. Food Microbiol,2002

2. The degradation of phytate by microbial and wheat phytases is dependent on the phytate matrix and the phytase origin;Brejnholt;J. Sci. Food Agric,2011

3. The “controlled fermentation” as feeding concept for pigs—a characterization from the point of view of animal nutrition and veterinary medicine.;Bunte;Übers. Tierernäh,2019

4. Fermented and nonfermented liquid feed to growing pigs: effect on aspects of gastrointestinal ecology and growth performance;Canibe;J. Anim. Sci,2003

5. Fermented liquid feed – microbial and nutritional aspects and impact on enteric diseases in pigs;Canibe;Anim. Feed Sci. Technol,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3