Impact of storage conditions and premix type on water-soluble vitamin stability

Author:

Saensukjaroenphon Marut1,Jones Cassandra K2ORCID,Evans Caitlin E1,Gebhardt Jordan T3ORCID,Woodworth Jason C2ORCID,Stark Charles R1,Bergstrom Jon R4,Paulk Chad B1

Affiliation:

1. Departments of Grain Sciences and Industry, College of Agriculture, Kansas State University , Manhattan, KS 66506 , USA

2. Department of Animal Sciences and Industry, Kansas State University , Manhattan, KS 66506 , USA

3. Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University , Manhattan, KS 66506 , USA

4. DSM Nutritional Products, North America, Animal Nutrition and Health , Parsippany, NJ 07054 , USA

Abstract

Abstract Mitigation options to reduce the risk of foreign animal disease entry into the United States may lead to degradation of some vitamins. The objective of Exp. 1 was to determine the impact of 0, 30, 60, or 90 d storage time on water-soluble vitamin (riboflavin, niacin, pantothenic acid, and cobalamin) stability when vitamin premix (VP) and vitamin trace mineral premix (VTM) were blended with 1% inclusion of medium-chain fatty acid (MCFA) (1:1:1 blend of C6:C8:C10) or mineral oil (MO) with different environmental conditions. Samples stored at room temperature (RT) (approximately 22 °C) or in an environmentally controlled chamber set at 40 °C and 75% humidity, high temperature high humidity (HTHH). The sample bags were pulled out at day 0, 30, 60, and 90 for RT condition and HTHH condition. Therefore, treatments were analyzed as a 2 × 2 × 2 × 3 factorial, with two premix types (vitamin premix vs. VTM), two oil types (MO vs. MCFA), two storage conditions (RT vs. HTHH), and three time points (day 30, 60, and 90). The objective of Exp. 2 was to determine the effect of heat pulse treatment and MCFA addition on water-soluble vitamin (riboflavin, niacin, pantothenic acid, and cobalamin) stability with two premix types. A sample from each treatment was heated at 60 °C and 20% humidity. Therefore, treatments were analyzed as a 2 × 2 factorial, with two premix types (VP vs. VTM) and two oil types (MO vs. MCFA). For Exp. 1, the following effects were significant for riboflavin: main effect of premix type (P < 0.0001), storage condition (P = 0.015), and storage time (P < 0.0001); for pantothenic acid: premix type × storage time × storage condition (P = 0.003) and premix type × oil type (P < 0.0001) interactions; and for cobalamin: premix type × storage condition (P < 0.0001) and storage time × storage condition (P < 0.0001) interactions and main effect of oil type (P = 0.018). The results of Exp. 2 demonstrated that there was an interaction between oil type and premix type for only pantothenic acid (P = 0.021). The oil type did not affect the stability of riboflavin, niacin, or cobalamin and pantothenic acid stability was not different within similar premixes. The only difference in water-soluble vitamin stability between VP and VTM was for pantothenic acid (P < 0.001). The results of this experiment demonstrated that the stability of water soluble vitamins are dependent on the vitamin of interest and the conditions at which it is stored.

Publisher

Oxford University Press (OUP)

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3