Production performance, nutrient use efficiency, and predicted enteric methane emissions in dairy cows under confinement or grazing management system

Author:

Brito Andre F1,Almeida Kleves V1ORCID,Oliveira Andre S2

Affiliation:

1. Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH, 03824, USA

2. Dairy Cattle Research Laboratory, Universidade Federal de Mato Grosso, Campus Sinop, Sinop, MT, 78557-267, Brazil

Abstract

Abstract There has been an intense debate regarding the economic, social, and environmental sustainability of confinement versus grazing dairy systems. Our goal was to conduct a meta-analysis to compare dry matter intake, milk yield and composition, nutrient use efficiency (i.e., feed efficiency, milk N efficiency), and predicted enteric CH4 emissions using studies that simultaneously evaluated confinement and grazing. We were able to include in the meta-analysis 8 peer-reviewed articles that met the following selection criteria: (1) publication between 1991 and 2021 in English language, (2) report either SEM or SD, (3) inclusion of at least 1 confinement [total mixed ration or fresh cut herbage fed indoors (i.e., zero-grazing)] and 1 grazing treatment in the same study, and (4) use of markers (internal or external) to estimate herbage dry matter intake. Two unpublished experiments were added to the data set resulting in a total of 10 studies for comparing confinement and grazing. The magnitude of the effect (i.e., effect size) was evaluated using weighted raw mean differences between grazing and confinement systems for a random effect model. Enteric CH4 production was predicted as follows: CH4 (g/d) = 33.2 (13.54) + 13.6 (0.33) × dry matter intake + 2.43 (0.245) × neutral detergent fiber. Dry matter intake (–9.5%), milk yield (–9.3%), milk fat yield (–5.8%), milk protein yield (–10%), and energy-corrected milk (–12%) all decreased in grazing versus confined dairy cows. In contrast, concentration of milk fat and feed efficiency (energy-corrected milk/dry matter intake) were not affected by management system. Whereas milk protein concentration increased, milk nitrogen (N) efficiency (milk N/N intake) tended to decrease in grazing compared with confinement. Predicted enteric CH4 production was 6.1% lower in grazing than confined dairy cows. However, CH4 yield (g/kg of dry matter intake) and CH4 intensity (g/kg of energy-corrected milk) did not change between confinement and grazing. In conclusion, while production performance decreased in grazing dairy cows, nutrient use efficiency and predicted enteric CH4 emissions were relatively similar in both management systems. Results of our meta-analysis should be interpreted with caution due to the small number of studies that met our inclusion criteria leading to a limited number of treatment mean comparisons.

Publisher

Oxford University Press (OUP)

Subject

General Veterinary,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3