Validation of a smartphone-based device to measure concentration, motility, and morphology in swine ejaculates

Author:

Suárez-Trujillo Aridany12ORCID,Kandula Hemanth3,Kumar Jasmine3,Devi Anjali3,Shirley Larissa1,Thirumalaraju Prudhvi3,Kanakasabapathy Manoj Kumar3,Shafiee Hadi3,Hart Liane4

Affiliation:

1. Department of Animal Science, Purdue University , West Lafayette, IN 47909 , USA

2. Department of Animal Science, Berry College , Mount Berry, GA 30149 , USA

3. Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School , Boston, MA 02139 , USA

4. Verility, Inc. , Maxwell, IN 46154 , USA

Abstract

Abstract Assessment of swine semen quality is important as it is used as an estimate of the fertility of an ejaculate. There are many methods to measure sperm morphology, concentration, and motility, however, some methods require expensive instrumentation or are not easy to use on-farm. A portable, low-cost, automated device could provide the potential to assess semen quality in field conditions. The objective of this study was to validate the use of Fertile-Eyez (FE), a smartphone-based device, to measure sperm concentration, total motility, and morphology in boar ejaculates. Semen from six sexually mature boars were collected and mixed to create a total of 18 unique semen samples for system evaluations. Each sample was then diluted to 1:4, 1:8, 1:10, and 1:16 (for concentration only) with Androhep Plus semen extender (n = 82 total). Sperm concentration was evaluated using FE and compared to results measured using a Nucleocounter and computer assisted sperm analysis (CASA: Ceros II, Hamilton Thorne). Sperm motility was evaluated using FE and CASA. Sperm morphological assessments were evaluated by a single technician manually counting abnormalities and compared to FE deep-learning technology. Data were analyzed using both descriptive statistics (mean, standard deviation, intra-assay coefficient of variance, and residual standard deviation [RSD]) and statistical tests (correlation analysis between devices and Bland-Altman methods). Concentration analysis was strongly correlated (n = 18; r > 0.967; P < 0.0001) among all devices and dilutions. Analysis of motility showed moderate correlation and was significant when all dilutions are analyzed together (n = 54; r = 0.558; P < 0.001). The regression analysis for motility also showed the RSD as 3.95% between FE and CASA indicating a tight fit between devices. This RSD indicates that FE can find boars with unacceptable motility (boars for example with less than 70%) which impact fertility and litter size. The Bland-Altman analysis showed that FE-estimated morphological assessment and the conventionally estimated morphological score were similar, with a mean difference of ~1% (%95 Limits of Agreement: −6.2 to 8.1; n = 17). The results of this experiment demonstrate that FE, a portable and automated smartphone-based device, is capable of assessing concentration, motility, and morphology of boar semen samples.

Publisher

Oxford University Press (OUP)

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3