Establishment of xenografts of urological cancers on chicken chorioallantoic membrane (CAM) to study metastasis

Author:

Hu Junhui1,Ishihara Moe1,Chin Arnold I23,Wu Lily1243

Affiliation:

1. Department of Molecular and Medical Pharmacology

2. Department of Urology

3. Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, CA 90095, USA

4. Department of Pediatrics

Abstract

Abstract Cancer of the urological system commonly occurs in the kidney, bladder, and prostate gland. The clear cell subtype of renal cell carcinoma (ccRCC) constitutes the great majority of kidney cancer. Metastatic ccRCC portends a very poor outcome with no effective treatment available. Prostate cancer is the most common cancer in males in the US. Despite recent advances in selective kinase inhibitors and immunotherapies, the rate of developing new treatment from bench to bedside is slow. A time-consuming step is at the animal drug testing stage, in which the mouse model is the gold standard. In the pursuit to streamline the in vivo cancer biology research and drug development, we explored the feasibility of the chicken chorioallantoic membrane (CAM) model to establish xenografts. The CAM model greatly shortens the time of tumor growth and lowers the cost comparing to immunocompromised mice. We generated CAM xenografts from ccRCC, bladder and prostate cancer, with established cancer cell lines and freshly isolated patient-derived tissues, either as primary tumor cells or small pieces of tumors. The successful CAM engraftment rate from the different tumor sources is 70% or above. Using our previously established metastatic ccRCC mouse model, we showed that the CAM xenograft maintains the same tumor growth pattern and metastatic behavior as observed in mice. Taken together, CAM can serve as a valuable platform to establish new patient-derived xenografts (PDXs) to study tumor biology, thus accelerating the development of individualized treatment to halt the deadly metastatic stage of cancer.

Funder

National Cancer Institute

National Institutes of Health

Tobacco-related Disease Research Program

Department of Defense

Cancer Research Coordinating Committee

University of California, Los Angeles

UCLA Jonsson Comprehensive Cancer Center

UCLA CTSI

Publisher

Oxford University Press (OUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3