Clinical applications of exosome membrane proteins

Author:

Hu Qian12,Su Hang3,Li Juan2,Lyon Christopher14,Tang Wenfu2,Wan Meihua2,Hu Tony Ye14

Affiliation:

1. Center of Cellular and Molecular Diagnosis, Tulane University School of Medicine, New Orleans, LA 70112, USA

2. Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China

3. Health Management Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China

4. Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA

Abstract

Abstract Extracellular vesicles (EVs) are small membranous particles that can mediate cell-to-cell communication and which are divided into at least three categories according to their subcellular origin and size: exosomes, microvesicles, and apoptotic bodies. Exosomes are the smallest (30–150 nm) of these EVs, and play an important role in EV-mediated cell-to-cell interactions, by transferring proteins, nucleic acids and, lipids from their parental cells to adjacent or distant cells to alter their phenotypes. Most exosome studies in the past two decades have focused on their nucleic acid composition and their transfer of mRNAs and microRNAs to neighboring cells. However, exosomes also carry specific membrane proteins that can identify the physiological and pathological states of their parental cells or indicate their preferential target cells or tissues. Exosome membrane protein expression can also be directly employed or modified to allow exosomes to serve as drug delivery systems and therapeutic platforms, including in targeted therapy approaches. This review will briefly summarize information on exosome membrane proteins components and their role in exosome–cell interactions, including proteins associated with specific cell-interactions and diseases, and the potential for using exosome membrane proteins in therapeutic targeting approaches.

Funder

National Institutes of Health

Arizona Biomedical Research Commission

Publisher

Oxford University Press (OUP)

Subject

General Medicine

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3