Potential interactive effects between invasive Lumbricus terrestris earthworms and the invasive plant Alliaria petiolata on a native plant Podophyllum peltatum in northeastern Ohio, USA

Author:

Cope Colin G1,Eysenbach Sarah R2,Faidiga Alexandra S1,Hausman Constance E2,Medeiros Juliana S3,Murphy Jennifer E1,Burns Jean H1

Affiliation:

1. Department of Biology, Case Western Reserve University, Cleveland, OH, USA

2. Cleveland Metroparks, Parma, OH, USA

3. The Holden Arboretum, Kirtland, OH, USA

Abstract

Abstract We test whether the invasive earthworm Lumbricus terrestris and leaf litter of the invasive herbaceous plant Alliaria petiolata interact to influence the native plant, Podophyllum peltatum, using both observational field data and a multi-year experiment. We hypothesized invader interactive effects on the native plant might result from either changes in allelochemical distribution in the soil or nutrient availability mediated by the invasive earthworm pulling leaf litter down into the soil. Within the field data we found that Alliaria petiolata presence and higher soil nitrogen correlated with reduced Podophyllum peltatum cover, and no evidence for an invader–invader interaction. Within the factorial experiment, we found a super-additive effect of the two invaders on plant biomass only when activated carbon was present. In the absence of activated carbon, there were no differences in Podophyllum peltatum biomass across treatments. In the presence of activated carbon, Podophyllum peltatum biomass was significantly reduced by the presence of both Lumbricus terrestris and Alliaria petiolata leaf litter. The absence of an effect of Alliaria petiolata leaves without activated carbon, combined with a failure to detect arbuscular mycorrhizal colonization, suggests that indirect effects of allelochemicals on arbuscular mycorrhizal fungi were not the primary driver of treatment responses. Rather direct nutrient availability might influence a potential interaction between these invaders. Leaf nitrogen content was higher and leaf CO2 concentration was lower in the presence of Lumbricus terrestris, but treatment did not influence maximum photosynthetic rate. While the field data do not suggest a negative interaction between these invaders, the experiment suggests that such an interaction is possible with greater environmental stress, such as increasing nitrogen deposition. Further, even plants with rapid physiological responses to increased nitrogen availability may have other physiological limits on growth that prevent them from compensating from the harm caused by multiple invaders.

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3