Correlated evolution of leaf and root anatomic traits in Dendrobium (Orchidaceae)

Author:

Qi Ying12,Huang Jia-Lin1,Zhang Shi-Bao1

Affiliation:

1. Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China

2. University of Chinese Academy of Sciences, Beijing, China

Abstract

Abstract The whole-plant economic spectrum concept predicts that leaf and root traits evolve in coordination to cope with environmental stresses. However, this hypothesis is difficult to test in many species because their leaves and roots are exposed to different environments, above- and below-ground. In epiphytes, both leaves and roots are exposed to the atmosphere. Thus, we suspect there are consistent water conservation strategies in leaf and root traits of epiphytes due to similar selection pressures. Here, we measured the functional traits of 21 species in the genus Dendrobium, which is one of the largest epiphytic taxa in the family Orchidaceae, and used phylogenetically independent contrasts to test the relationships among traits, and between traits and the environment. Our results demonstrate that species with a thicker velamen tended to have thicker roots, a thicker root cortex and vascular cylinder, and a larger number of vessels in the root. Correspondingly, these species also had higher leaf mass per area, and thicker leaf lower cuticles. Leaf and root traits associated with water conservation showed significantly positive relationships. The number of velamen layers, leaf density and the ratio of vascular cylinder radius to root radius were significantly affected by the species’ differing environments. Thus, traits related to water conservation and transport may play an important role in helping Dendrobium cope with the cool and dry conditions found at high elevations. These findings confirmed the hypothesis that leaf and root traits have evolved in coordination, and also provide insights into trait evolution and ecological adaptation in epiphytic orchids.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Science and Technology Plan of Yunnan

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3