Employing template-directed CRISPR-based editing of theOsALSgene to create herbicide tolerance in Basmati rice

Author:

Zafar Kashaf12,Khan Muhammad Zuhaib1,Amin Imran1,Mukhtar Zahid1,Zafar Mehak1,Mansoor Shahid1ORCID

Affiliation:

1. Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences , Jhang Road, Faisalabad 37000 , Pakistan

2. Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS) , Quetta 87300 , Pakistan

Abstract

AbstractRice (Oryza sativa) is one of the primary food crops which contributes major portion of daily calorie intake. It is used as model crop for various genome editing studies. Basmati rice was also explored for establishing non-homologous end joining-based genome editing. But it was not clear whether homology-directed repair (HDR)-based genome editing can be done in Basmati rice. The current study was designed to establish HDR-based genome editing in Basmati rice to develop herbicide tolerance. There is severe weed spread when rice is grown via direct planted rice method in various countries to save labour and water resources. Therefore, the use of herbicides is necessary to control weeds. These herbicides can also affect cultivated rice which creates the need to develop herbicide-tolerant rice. In current study, we introduced a point mutation in Acetolactate Synthase gene to convert tryptophan to leucine at position 548. For this purpose, different constructs for HDR were tested with different RNA scaffold and orientation of repair templates. Out of four different architectures, the one having repair template identical to the target DNA strand precisely edited the target site. We successfully established template-directed CRISPR-Cas9 system in Super Basmati rice by detecting desired substitutions at the target site in Acetolactate Synthase locus. Moreover, this editing of Acetolactate Synthase gene resulted in the production of herbicide tolerance in Super Basmati rice. This study suggests that such type of HDR system can be used to precisely edit other genes for crop improvement.

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3