Phylogeography of Iris loczyi (Iridaceae) in Qinghai–Tibet Plateau revealed by chloroplast DNA and microsatellite markers

Author:

Zhang Guoli1,Han Yan2,Wang Huan1,Wang Ziyang1,Xiao Hongxing1,Sun Mingzhou1

Affiliation:

1. Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun 130024, China

2. Qian’an No. 1 Middle School, Tangshan 063000, China

Abstract

Abstract Quaternary climate oscillations and complex topography have tremendous effects on current distribution and genetic structure of species, and hence the Qinghai–Tibet Plateau (QTP), the largest plateau in the world, has become a hotspot for many phylogeographic studies. However, little is known about the phylogeographic pattern of herbaceous plants in QTP. Here, we investigate the genetic diversity, population structure and historical dynamics of Iris loczyi, using five chloroplast DNA (cpDNA) fragments and seven microsatellite markers. A total of 15 populations, and 149 individuals were sampled throughout the QTP. High genetic diversity was detected both in cpDNA (Hd = 0.820) and SSR (Ho = 0.689, He = 0.699). Ten cpDNA haplotypes and 163 alleles were identified. AMOVA and clustering analyses revealed obvious differentiation between regions. The Nst, Gst and Mantel test showed significant phylogeographic structure of I. loczyi. The neutrality test and mismatch distribution analyses indicated that I. loczyi could not have undergone a historical population expansion, but population XS from the Qilian Mountain area could have experienced a local expansion. Bottleneck analyses indicated that I. loczyi had not experienced bottleneck recently. Based on cpDNA and SSR results, the Qilian Mountain area was inferred as a potential glacial refuge, and the southern Tibet valley was considered as a ‘microrefugia’ for I. loczyi. These findings provided new insights into the location of glacial refuges for the species distributed in QTP, and supplemented more plant species data for the response of QTP species to the Quaternary climate.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3