xpression of aquaporin subtypes (GhPIP1;1, GhTIP2;1, and GhSIP1;3) in cotton (Gossypium hirsutum L.) submitted to salt stress

Author:

Braz Luana C C1,Fernandes Pedro D2,Barbosa Daniela D3,Dutra Wellison F3,Silva Carliane R C4,Lima Liziane M5,Cavalcanti José J V5,Farias Francisco J C5,Santos Roseane C5

Affiliation:

1. Universidade Estadual da Paraíba, Campina Grande, PB, Brazil

2. Universidade Federal de Campina Grande, Campina Grande, PB, Brazil

3. Universidade Federal da Paraíba, Areia, PB, Brazil

4. Universidade Federal Rural de Pernambuco, Recife, PE, Brazil

5. Embrapa Algodão, Campina Grande, PB, Brazil

Abstract

Abstract Salinization leads to several worldwide damages in agricultural regions, mainly in semiarid regions where leaching of salt is poor due to limited and erratic rainfall. Cotton (Gossypium hirsutum L.) is a Malvaceae with wide genetic variability to salt stress. The identification of salinity tolerant genotypes is a dynamic target in a breeding program, and the selection is often based on plant phenotypes. Molecular markers are reliable tools to aid in these selection procedures. Aquaporin (AQPs) are channel proteins that play fundamental role in water relations and tolerance to environmental stresses. Plants have fine regulation of water transport through AQPs activities. In order to evaluate the AQP expressions of different cotton cultivars submitted to salt stress, we use molecular and physiological tools, based on RT-qPCR and gas exchange assays. Seven cultivars were submitted to 95 mM NaCl, started at V3 stage (21 days after emergence), during 72 h. At the end of stress treatment, root tissues were used to total RNA extraction, followed by cDNA synthesis and RT-qPCR analyzes. Three sets of specific primers were used, drawn from AQP accessions deposited in NCBI. Additionally, full expanded leaves were used to gas exchange assays and to estimate the relative water content. The dry matter of the shoots was also evaluated. Based on pattern of AQPs transcripts, we found that all semiarid tolerant cultivars (BRS Seridó, 7MH, CNPA MT 2009 152 and BRS 416) showed downregulation of AQP subtypes, mainly GhPIP1;1 and GhTIP2;1 whose action is characterized as tolerant to salinity. The results of gas exchanges, relative water content and dry matter were consistent with the molecular findings in these cultivars, confirming that GhPIP1;1 and GhTIP2;1, located at plasma membrane and vacuoles, respectively, could be adopted as AQP markers for identification of cotton tolerant to salt stress.

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3