Development and application of an inexpensive open-source dendrometer for detecting xylem water potential and radial stem growth at high spatial and temporal resolution

Author:

Gleason Sean M12,Stewart Jared J13,Allen Brendan12,Polutchko Stephanie K13,McMahon Jordan14,Spitzer Daniel2,Barnard David M1

Affiliation:

1. Water Management and Systems Research Unit, USDA-ARS , Fort Collins, CO 80526 , USA

2. Department of Forest and Rangeland Stewardship, Colorado State University , Fort Collins, CO 80523 , USA

3. Department of Ecology and Evolutionary Biology, University of Colorado , Boulder, CO 80309 , USA

4. College of Engineering, Science, Technology, and Agriculture, Central State University , Wilberforce, OH 45384 , USA

Abstract

Abstract There is currently a need for inexpensive, continuous, non-destructive water potential measurements at high temporal resolution (<1 min). We describe here the development and testing of an entirely open-source dendrometer that, when combined with periodic Scholander pressure chamber measurements, provides sub-minute resolution estimates of water potential when placed on tissues exhibiting little or no secondary growth (petioles, monocotyledon stems). The dendrometer can also be used to measure radial growth of stems and branches when placed on dicotyledon and gymnosperm species. The dendrometer can be interfaced directly with a computer in real time in the lab or greenhouse, or connected to a datalogger for long periods of use in the field on batteries. We tested this device on a herbaceous dicotyledon (Helianthus annuus) (petioles and stems) and a monocotyledon (Zea mays) species (stems) for 1 week during dehydration and re-watering treatments under laboratory conditions. We also demonstrated the ability of the device to record branch and trunk diameter variation of a woody dicotyledon (Rhus typhina) in the field. Under laboratory conditions, we compared our device (hereafter ‘contact’ dendrometer) with modified versions of another open-source dendrometer (the ‘optical’ dendrometer). Overall, contact and optical dendrometers were well aligned with one another, with Pearson correlation coefficients ranging from 0.77 to 0.97. Both dendrometer devices were well aligned with direct measurements of xylem water potential, with calibration curves exhibiting significant non-linearity, especially at water potentials near the point of incipient plasmolysis, with pseudo R2 values (Efron) ranging from 0.89 to 0.99. Overall, both dendrometers were comparable and provided sufficient resolution to detect subtle differences in stem water potential (ca. 50 kPa) resulting from light-induced changes in transpiration, vapour pressure deficit and drying/wetting soils. All hardware designs, alternative configurations, software and build instructions for the contact dendrometers are provided.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3