Persistent calyces increase floral longevity and female fitness in Salvia miltiorrhiza (Lamiaceae)

Author:

Li Deng-Fei12,Yu Yan1,Yang Hao-Jin1,Yan Xian-Chun1

Affiliation:

1. Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637002, China

2. School of Life Sciences, Central China Normal University, Wuhan 430079, China

Abstract

Abstract The evolution of persistent calyces may be an adaptation to ensure reproductive success of certain flowering plants. However, experimental evidence of the functions of persistent calyces during flowering and seed development remains scarce. We explored the possible functions of persistent calyces in Salvia miltiorrhiza, a perennial herb with campanulate calyx. We conducted calyx manipulation experiments to examine whether persistent calyces affect visitation rates of nectar robbers and pollinators, individual flower longevity, fruit set, seed set and seed mass. Our findings suggested that shortening of the calyx significantly decreased individual flower longevity, fruit set and seed mass, but did not affect visitation of pollinators and nectar robbers. In addition, the seed set of control flowers and the flowers with calyx shortened at the beginning of fruiting stage (CSF flowers) did not significantly differ, but both were higher than that of the flowers with calyx shortened at the beginning of blooming stage (CSB flowers). The seed set and fruit set of CSB flowers were limited by pollination due to the reduction in floral longevity. We conclude that persistent calyces of S. miltiorrhiza may represent adaptive strategies to maintain floral longevity and increase plant fitness. Persistent calyces may provide protection for the growth of flowers and contribute resources to the development of fruits and seeds.

Funder

Foundation of Science and Technology Department of Sichuan Province in China

Scientific Research Foundation of China West Normal University

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3