Dark-centred umbels in Apiaceae: diversity, development and evolution

Author:

Claßen-Bockhoff Regine1,Celep Ferhat2,Ajani Yousef13,Frenken Lisa1,Reuther Kerstin1,Doğan Musa4

Affiliation:

1. Institute of Organismic and Molecular Evolution (IOME), Department of Biology, Johannes Gutenberg-University , Saarstraße 21, 55099 Mainz , Germany

2. Faculty of Science and Letters, Department of Biology, Kırıkkale University , Kırıkkale, Yahşihan, P.O. 71450 , Turkey

3. Department of Botany, Research Institute of Forests and Rangelands , P.O. Box 13185-116, Tehran , Iran

4. Department of Biological Sciences, Middle East Technical University Ankara , Çankaya, P.O. 06800 , Turkey

Abstract

Abstract The wild carrot (Daucus carota) is famous for its dark flowers in the umbel centre. Several studies have been conducted to figure out their functional significance, but the evolution of the dark centre remains an enigma. In the present paper, we consider all known apioid species with dark-centred umbels to get a deeper understanding of their biology and evolution. Based on herbaria studies, literature and field work, we reconstructed the distribution area of 10 species (7 genera, 6 clades) of Apiaceae-Apioideae. To recognize homology of the dark structures, developmental studies were conducted in Artedia squamata and Echiophora trichophylla Field studies included architecture, flower morph distribution (andromonoecy) and flowering sequence within the plants, abundancy and behaviour of umbel visitors and preliminary manipulation experiments (removal/adding of dark structures). The dark structures are not homologous to each other. In the Daucus alliance, central flowers or umbellets are conspicuous, whereas in other species dark brush-like (A. squamata) or club-shaped structures (Dicyclophora persica, Echinophora trichophylla, Tordylium aegyptiacum, T. cappadocicum) develop from a naked receptacle. Species are andromonoecious, have a modular architecture and flower in multicyclic protandrous sequence. Among the many umbel visitors, beetles were the most abundant group. Only visitors found on umbels in both flowering phases were recognized as possible pollinators. Manipulation experiments indicated that the dark structures influence the behaviour of some, but not all umbel visitors. In Echinophora trichophylla, a massive gall infection was observed. It is evident that the dark structures evolved several times in parallel. The brush- and club-shaped structures are interpreted as the results of mutations affecting umbel development. Dark umbel centres are most likely stabilized by selection due to their general adaptive function. Their appearance in an area known as a hotspot of beetle pollination gives rise to the assumption that they may act as beetle marks.

Funder

EU Erasmus

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Reference80 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3