Positive pressure in bamboo is generated in stems and rhizomes, not in roots

Author:

Michaud Joseph M1,Mocko Kerri1,Schenk H Jochen1

Affiliation:

1. Department of Biological Science, California State University Fullerton , 800 N. State College Blvd., Fullerton, CA 92831 , USA

Abstract

Abstract Bamboos stand out among other tall plants in being able to generate positive pressure in the xylem at night, pushing water up to the leaves and causing drops to fall from leaf tips as guttation that can amount to a steady nocturnal ‘bamboo rain’. The location and mechanism of nocturnal pressure generation in bamboos are unknown, as are the benefits for the plants. We conducted a study on the tall tropical bamboo species Bambusa oldhamii (giant timber bamboo) growing outdoors in southern California under full irrigation to determine where in the plant the nocturnal pressure is generated, when it rises in the evening, and when it dissipates in the morning. We hypothesized that the build-up of positive pressure would be triggered by the cessation of transpiration-driven sap flow and that resumption of sap flow in the morning would cause the pressure to dissipate. Nocturnal pressure was observed in mature stems and rhizomes, but never in roots. The pressure was episodic and associated with stem swelling and was usually, but not always, higher in rhizomes and basal stems than in stems at greater height. Time series analyses revealed that dry atmospheric conditions were followed by lower nocturnal pressure and rainfall events by higher stem pressure. Nocturnal pressure was unrelated to sap flow and even was generated for a short time in isolated stem pieces placed in water. We conclude that nocturnal pressure in bamboo is not ‘root pressure’ but is generated in the pseudo-woody rhizomes and stems. It is unrelated to the presence or absence of sap flow and therefore must be created outside of vessels, such as in phloem, parenchyma, or fibres. It is unlikely to be a drought adaptation and may benefit the plants by maximizing stem water storage for daytime transpiration or by transporting nutrients to the leaves.

Publisher

Oxford University Press (OUP)

Reference39 articles.

1. Ueber das Saftsteigen;Askenasy;Verhandlungen des Naturhistorisch-medizinischen Vereins zu Heidelberg, N.F,1895

2. The control of stomata by water balance;Buckley;The New Phytologist,2005

3. How do stomata respond to water status;Buckley;The New Phytologist,2019

4. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants;Burgess;Tree Physiology,2001

5. A new theory for the ascent of sap—cohesion supported by tissue pressure;Canny;Annals of Botany,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3