A meta-analysis of the combined effects of elevated carbon dioxide and chronic warming on plant %N, protein content and N-uptake rate

Author:

Jayawardena Dileepa M1,Heckathorn Scott A1,Boldt Jennifer K2

Affiliation:

1. Department of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA

2. Agricultural Research Service, United States Department of Agriculture, Toledo, OH 43606, USA

Abstract

Abstract Elevated CO2 (eCO2) and high temperatures are known to affect plant nitrogen (N) metabolism. Though the combined effects of eCO2 and chronic warming on plant N relations have been studied in some detail, a comprehensive statistical review on this topic is lacking. This meta-analysis examined the effects of eCO2 plus warming on shoot and root %N, tissue protein concentration (root, shoot and grain) and N-uptake rate. In the analyses, the eCO2 treatment was categorized into two classes (<300 or ≥300 ppm above ambient or control), the temperature treatment was categorized into three classes (<1.5, 1.5–5 and >5 °C above ambient or control), plant species were categorized based on growth form and functional group and CO2 treatment technique was also investigated. Elevated CO2 alone or in combination with warming reduced shoot %N (more so at ≥300 vs. <300 ppm above ambient CO2), while root %N was significantly reduced only by eCO2; warming alone often increased shoot %N, but mostly did not affect root %N. Decreased shoot %N with eCO2 alone or eCO2 plus warming was greater for woody and non-woody dicots than for grasses, and for legumes than non-legumes. Though root N-uptake rate was unaffected by eCO2, eCO2 plus warming decreased N-uptake rate, while warming alone increased it. Similar to %N, protein concentration decreased with eCO2 in shoots and grain (but not roots), increased with warming in grain and decreased with eCO2 and warming in grain. In summary, any benefits of warming to plant N status and root N-uptake rate will generally be offset by negative effects of eCO2. Hence, concomitant increases in CO2 and temperature are likely to negate or decrease the nutritional quality of plant tissue consumed as food by decreasing shoot %N and shoot and/or grain protein concentration, caused, at least in part, by decreased root N-uptake rate.

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3