A new experimental setup to measure hydraulic conductivity of plant segments

Author:

Krieger Louis12,Schymanski Stanislaus J12

Affiliation:

1. Environmental Research and Innovation, Luxembourg Institute of Science and Technology , 41 Rue du Brill, 4422 Belvaux , Luxembourg

2. Faculty of Science, Technology and Medicine, University of Luxembourg , 2 Av. de l’Universite, 4365 Esch-sur-Alzette , Luxembourg

Abstract

Abstract Plant hydraulic conductivity and its decline under water stress are the focal point of current plant hydraulic research. The common methods of measuring hydraulic conductivity control a pressure gradient to push water through plant samples, submitting them to conditions far away from those that are experienced in nature where flow is suction driven and determined by the leaf water demand. In this paper, we present two methods for measuring hydraulic conductivity under closer to natural conditions, an artificial plant setup and a horizontal syringe pump setup. Both approaches use suction to pull water through a plant sample while dynamically monitoring the flow rate and pressure gradients. The syringe setup presented here allows for controlling and rapidly changing flow and pressure conditions, enabling experimental assessment of rapid plant hydraulic responses to water stress. The setup also allows quantification of dynamic changes in water storage of plant samples. Our tests demonstrate that the syringe pump setup can reproduce hydraulic conductivity values measured using the current standard method based on pushing water under above-atmospheric pressure. Surprisingly, using both the traditional and our new syringe pump setup, we found a positive correlation between changes in flow rate and hydraulic conductivity. Moreover, when flow or pressure conditions were changed rapidly, we found substantial contributions to flow by dynamic and largely reversible changes in the water storage of plant samples. Although the measurements can be performed under sub-atmospheric pressures, it is not possible to subject the samples to negative pressures due to the presence of gas bubbles near the valves and pressure sensors. Regardless, this setup allows for unprecedented insights into the interplay between pressure, flow rate, hydraulic conductivity and water storage in plant segments. This work was performed using an Open Science approach with the original data and analysis to be found at https://doi.org/10.5281/zenodo.7322605.

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Reference33 articles.

1. Use of centrifugal force in the study of xylem cavitation;Alder;Journal of Experimental Botany,1997

2. Post-fire effects in xylem hydraulics of Picea abies, Pinus sylvestris and Fagus sylvatica;Bär;New Phytologist,2018

3. Persistent decay of fresh xylem hydraulic conductivity varies with pressure gradient and marks plant responses to injury;Bonetti;Plant, Cell & Environment,2021

4. Jahrringcharakteristik und Gefässlängen in Fagus sylvatica L.I;Buchmüller;Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich,1986

5. Transporting water in plants;Canny;American Scientist,1998

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3