Impacts of plant and soil stoichiometry on species diversity in a desert ecosystem

Author:

Ji Suwan1,Jiang Lamei1,Hu Dong2,Lv Guanghui1

Affiliation:

1. College of Ecology and Environment, Xinjiang University , Urumqi 830017 , China

2. College of Life Science, Northwest University , Xi’an 710069 , China

Abstract

Abstract Plant and soil stoichiometric ratios can be used to explain changes in the structural and functional characteristics of plant communities. Exploring the relationships between the stoichiometric ratios and plant diversity is helpful to further elucidate the effects of soil and nutrient constraints on community vegetation. However, such studies remain poorly understood in desert ecosystems. In this study, we analysed the effects of soil moisture and salt content on soil and leaf stoichiometry, species diversity and their relationships in the desert ecosystem of the Ebinur Lake basin. The results showed that: (i) Compared with the low soil moisture and salinity (SW2) environment, the soil and leaf C, N, P contents and soil stoichiometric ratios were larger in the high soil moisture and salinity (SW1) environment, and the leaf stoichiometric ratios were smaller. (ii) In SW1 environment, species diversity was negatively correlated with soil C:N and C:P, but weakly correlated with soil stoichiometric ratios in SW2 environment. In addition, the relationships between it and leaf stoichiometric ratios were reversed in different moisture and salinity environments. (iii) Structural equation modelling showed that leaf C:P, C:N and soil C:P had strong effects on species diversity. This research aims to provide a scientific reference for maintaining plant diversity, vegetation reconstruction and ecosystem restoration in desert areas, and enrich the ecological stoichiometric theory of desert ecosystems.

Funder

Xinjiang Uygur Autonomous Region University Scientific Research Project

National Natural Science Foundation of China

Xinjiang Uygur Autonomous Region Graduate Research and Innovation Project

Xinjiang Uygur Autonomous Region innovation environment Construction special project & Science and technology innovation base construction project

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Reference70 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3