Affiliation:
1. College of Ecology and Environment, Xinjiang University , Urumqi 830017 , China
2. College of Life Science, Northwest University , Xi’an 710069 , China
Abstract
Abstract
Plant and soil stoichiometric ratios can be used to explain changes in the structural and functional characteristics of plant communities. Exploring the relationships between the stoichiometric ratios and plant diversity is helpful to further elucidate the effects of soil and nutrient constraints on community vegetation. However, such studies remain poorly understood in desert ecosystems. In this study, we analysed the effects of soil moisture and salt content on soil and leaf stoichiometry, species diversity and their relationships in the desert ecosystem of the Ebinur Lake basin. The results showed that: (i) Compared with the low soil moisture and salinity (SW2) environment, the soil and leaf C, N, P contents and soil stoichiometric ratios were larger in the high soil moisture and salinity (SW1) environment, and the leaf stoichiometric ratios were smaller. (ii) In SW1 environment, species diversity was negatively correlated with soil C:N and C:P, but weakly correlated with soil stoichiometric ratios in SW2 environment. In addition, the relationships between it and leaf stoichiometric ratios were reversed in different moisture and salinity environments. (iii) Structural equation modelling showed that leaf C:P, C:N and soil C:P had strong effects on species diversity. This research aims to provide a scientific reference for maintaining plant diversity, vegetation reconstruction and ecosystem restoration in desert areas, and enrich the ecological stoichiometric theory of desert ecosystems.
Funder
Xinjiang Uygur Autonomous Region University Scientific Research Project
National Natural Science Foundation of China
Xinjiang Uygur Autonomous Region Graduate Research and Innovation Project
Xinjiang Uygur Autonomous Region innovation environment Construction special project & Science and technology innovation base construction project
Publisher
Oxford University Press (OUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献