Affiliation:
1. Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian Province, China
2. Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fuzhou, Fujian Province, China
3. School of City and Architecture Engineering, Zaozhuang University, Zaozhuang, Shandong Province, China
Abstract
Abstract
A general relationship between the nitrogen (N) and phosphorus (P) content of all plant organs (e.g. leaf, stem, and root) is hypothesized to exist according to whole-plant economics spectrum (PES) theory, but the evidence supporting these expected patterns remains scarce. We measured the N and P content of the leaves, twigs and fine roots of 64 species in three different forest communities along an elevational gradient (evergreen broad-leaved forest, 1319 m a.s.l., coniferous and broad-leaved mixed forest, 1697 m a.s.l., and deciduous forest, 1818 m a.s.l.) in the Wuyishan National Nature Reserve, southeastern China. The scaling relationship between the N and P content and the linear regression relationship between the N:P ratio and N and P content were analysed. The leaf N and P content was significantly higher at the high-elevation site than at the low- or middle-elevation sites (P < 0.001). The N and P content followed a power-law relationship with similar scaling slopes between organs. The N (common slope, 1.13) and P (common slope, 1.03) content isometrically covaried among leaves, twigs and roots. The scaling exponents of the N–P relationship were not significantly different from 1.0 in all organs, with a common slope of 1.08. The scaling constants of N–P decreased significantly (P < 0.05) from the highest value in fine roots (β = 1.25), followed by leaves (β = 1.17), to the lowest value in twigs (β = 0.88). Standardized major axis (SMA) analyses and comparisons of 95 % confidence intervals also showed that the numerical values of the scaling slopes and the scaling constants did not differ regardless of elevation. The N content, but not the P content, accounted for a large proportion of the variation in the N:P ratio in leaves (N:P and N: r2 = 0.31, F = 33.36, P < 0.001) and fine roots (N:P and N: r2 = 0.15, F = 10.65, P < 0.05). In contrast, the N:P ratio was significantly related to both the N and P content in the twigs (N:P and N: r2 = 0.20, F = 17.86, P < 0.001; N:P and P: r2 = 0.34, F = 35.03, P < 0.001, respectively). Our results indicate that different organs of subtropical woody plants share a similar isometric scaling relationship between their N and P content, providing partial support for the PES hypothesis. Moreover, the effects of the N and P content on the N:P ratio differ between metabolic organs (leaves and fine roots) and structural organs (twigs), elucidating the stoichiometric regulatory mechanism of different organs.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Publisher
Oxford University Press (OUP)