Affiliation:
1. School of Life and Environmental Sciences, University of Sydney , Camperdown, NSW 2006 , Australia
Abstract
Abstract
When microscopy meets modelling the exciting concept of a ‘virtual leaf’ is born. The goal of a ‘virtual leaf’ is to capture complex physiology in a virtual environment, resulting in the capacity to run experiments computationally. One example of a ‘virtual leaf’ application is capturing 3D anatomy from volume microscopy data and estimating where water evaporates in the leaf and the proportions of apoplastic, symplastic and gas phase water transport. The same 3D anatomy could then be used to improve established 3D reaction-diffusion models, providing a better understanding of the transport of CO2 across the stomata, through the airspace and across the mesophyll cell wall. This viewpoint discusses recent progress that has been made in transitioning from a bulk leaf approach to a 3D understanding of leaf physiology, in particular, the movement of CO2 and H2O within the leaf.
Funder
Australian Research Council
Publisher
Oxford University Press (OUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献