Population genomics reveal apomixis in a novel system: uniclonal female populations dominate the tropical forest herb family, Hanguanaceae (Commelinales)

Author:

Niissalo Matti A12,Leong-Škorničková Jana1,Šída Otakar3,Khew Gillian S1

Affiliation:

1. Singapore Botanic Gardens, National Parks Board Singapore, Singapore, Singapore

2. Department of Biological Sciences, National University of Singapore, Singapore, Singapore

3. Department of Botany, National Museum, Cirkusová, Prague, Czech Republic

Abstract

Abstract The abundance of apomixis in tropical plant genera is poorly understood, and this affects the understanding of speciation and evolution. Hanguanaceae is a tropical monogeneric, dioecious plant family. All but two species are solitary herbs with no capability to spread vegetatively. Viable seeds are often produced when males have not been observed. Our aim was to investigate the presence of apomixis in Hanguana. We used reduced representation genomics to study phylogenetics and genetic variability in all populations of Hanguana in Singapore. We measured genome sizes and estimated ploidy levels in 10 species. Almost all taxa tested were genetically uniform (uniclonal) regardless of the extent of their distribution. The distribution of single clones over distinct localities supports our hypothesis of apomictic reproduction. Only one sexually reproducing native species was detected. Triploid and pentaploid states support our hypothesis that the type of apomixis in Hanguana is gametophytic. Population genomics tools offer a quick and cost-effective way of detecting excess clonality and thereby inferring apomixis. In the case of Hanguana, the presence of male plants is a strong indicator of sexual reproduction, whereas genome triplication is indicative of apomictic reproduction.

Funder

National University of Singapore

Department of Biological Sciences and Singapore International Graduate Student Award

Garden City Fund

National Parks Board Singapore

Ministry of Culture of the Czech Republic

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3