Anisohydric sugar beet rapidly responds to light to optimize leaf water use efficiency utilizing numerous small stomata

Author:

Barratt Georgina E1,Sparkes Debbie L1,McAusland Lorna1,Murchie Erik H1

Affiliation:

1. School of Biosciences, University of Nottingham, Loughborough, UK

Abstract

Abstract Under conditions of high transpiration and low soil water availability, the demand for water can exceed supply causing a reduction in water potential and a loss of cell turgor (wilting). Regulation of stomatal aperture mediates the loss of water vapour (gs), which in turn is dependent in part on the anatomical characteristics of stomatal density (SD) and stomatal size (SS). Anisohydric sugar beet (Beta vulgaris) is atypical, exhibiting wilting under high soil water availability. Spinach (Spinacia oleracea) belongs to the same family Chenopodiaceae s.s., but demonstrates a more typical wilting response. To investigate the role of stomatal dynamics in such behaviours, sugar beet and spinach leaves were exposed to step-changes in photosynthetic photon flux density (PPFD) from 250 to 2500 µmol m−2 s−1. Using a four log-logistic function, the maximum rate of stomatal opening was estimated. Concurrent measurements of SD and SS were taken for both species. While sugar beet coupled faster opening with smaller, more numerous stomata, spinach showed the converse. After exposure to drought, maximum gs was reduced in sugar beet but still achieved a similar speed of opening. It is concluded that sugar beet stomata respond rapidly to changes in PPFD with a high rate and magnitude of opening under both non-droughted and droughted conditions. Such a response may contribute to wilting, even under high soil water availability, but enables photosynthesis to be better coupled with increasing PPFD.

Funder

British Beet Research Organisation

School of Biosciences

Biotechnology and Biological Sciences Research Council

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3